Sep

OUR AWESOME CHATBOT FEATURES

NMODES chatbots and conversational AI solutions come with a unique set of features.

Our goal is to make it easy for businesses to create and manage chatbots. The features we offer are important for successful implementation of a chatbot not only because they significantly improve its quality, but they also allow you to edit your chatbot in natural language, without any need to have technical knowledge or AI specialist in the team. 

1. Free AI Training 

Our chatbot solutions come with free AI training for life.

We will train your chatbot and continue to enhance it indefinitely.
It is our responsibility to ensure that your chatbot has the updated natural language processing capabilities. It is also our responsibility to guarantee that it understands not only common language but also language that is specific to your business, such as names of the products, terminology used in your industry, inventory list, and more. 

Your chatbot will be interacting with the customers all the time. We will enable it to learn from these interactions continuously and improve its language understanding and responses as a result of this learning.

2. Editing in natural language 

We realize that AI is a complex body of knowledge and one of your biggest concerns is that you are not familiar with it well enough. We made sure that you don’t need to be technically savvy to successfully manage a chatbot. Using our simple and friendly online interface you can control your chatbot in real time using common natural language. No technical knowledge is required.

At NMODES we continuously improve our AI capabilities. We use our AI not only to make the experience of your customers, conversing with your chatbot, better, but also to make your own experience, conversing with our platform, better.

Eventually the platform will be able to interact with you fully in natural language. We are not entirely there yet (it is an immense task). Still, we hold true to our promise that there is no need in being technically savvy to operate our platform even today. When the platform does not understand natural language our highly trained specialists are always ready to take over and provide support.


3. Real time connectivity 

Often there is a need for chatbot to access structured data (such as inventory database) to answer customer’s question. We made it easy for your chatbot to create external queries in real time and modify the responses accordingly. Your chatbot is able to decide in the middle of the conversation, based on the information it received from your database, how to respond and how to proceed with the conversation.

These are the most exciting among the features we created so that our customers have easy and enjoyable chatbot experiences. But there are other features available: conversational templates, dynamic AI Engines clustering, multiple widget skins and more! Let us know if want to see the full list of features.

To learn about the core technologies required to build a chatbot check out this post:

Interested in reading more? Check out our other blogs:

Artificial Intelligence Chat Is Evolving Faster Than IVR

                                                         

Although it doesn’t feel like all that long ago, way back in the 90s one of the most important factors to a call center’s success was the ability to route a customer to the right support agent with the IVR (Interactive Voice Response). Countless hours were spent identifying the most efficient call routing patterns and expert agent capabilities to ensure that your request reached the right person quickly. This technology is still widely used today and there are still teams in the largest companies programming IVR systems to accomplish pretty much the same goal.

As the standard for customer support evolved there have been many attempts to improve the function and the customer experience associated with IVRs to reduce hold times and provide more relevant support faster. Even today some companies will use their IVR system as a way to keep a customer on hold, rather than provide a solution, when agents are inundated with calls.

For those of us who’ve worked in the voice industry for some time, we’ve seen first-hand the attempts to accomplish a customer’s need before reaching an agent. First there was expert agent routing that delivered your call to the agent most qualified to help you. Then came advances in voice recognition, which today has evolved to be a very effective tool to increase containment rates and deflect calls from reaching a live agent. My two favorite examples of the power of voice recognition are Cox Communications and Capital One, two examples of great voice recognition and routing.

Our memory, however, is short. It wasn’t so long ago that we were all pulling our hair out punching digits into the phone or constantly repeating “agent”, “Agent”, “AGENT”, AGENT!!!!!”.

Whether it was a limit of computational power or the sheer cost of developing and implementing advanced call center technology, it took decades for phone systems to be able to front end the customer support process as efficiently as they do today. Thankfully we all survived to see it without boiling over from the hypertension usually associated with calling with a customer service department.

Bad customer experience is definitely not the case with Chat Artificial Intelligence (Chat AI). While we seem to hear about the shortcomings of Chat AI like the disconnected conversations and the robotic like responses, these experiences are usually the product of Chatbots with limited AI functionality or early stage deployments. The increases in both computational power and the massive advancements in machine learning are driving excellent customer experiences that improve over time.

When was the last time you heard of technology actually performing better, on its own, without a ton of additional development work or continuous updates? Well, that’s the case with Artificial Intelligence. Like a person, the more experience it has interacting with customers and information, the better it performs with little need to be manually improved or fine-tuned.

Today, AI Chat can be used to answer a large majority of customer requests and because Artificial Intelligence learns as it is used, customers prefer to interact through AI chat to avoid all of the frustrations commonly associated with calling a contact center agent. 

READ MORE

Meet Eliza, the Mother of AI

                                                             

Meet Eliza, the Mother of AI..

Today, Artificial Intelligence seems to be the buzz of every major enterprise. Salesforce is formally announcing Einstein this fall, IBM has worked on Watson for years now, and after 20 years of working with AI, Microsoft has made a few attempts to bring the technology to the market. With all this activity, you may be asking yourself what kind of impact AI will have on you and your business, and where you might want to look to investigate the possibilities Artificial Intelligence represents.

Before we discuss how AI will impact customer support and consumer experience, and how you may leverage it in your contact center, I thought it would be fun to take a look where AI got its start.

The term AI was coined by computer scientist John McCarthyin 1956 who subsequently went on to create the Dartmouth Conference to advance the ideas and technologies associated with machine intelligence. While this collective of thought leaders and scientists made huge advancements through programs at MIT and others, most of their work was only circulated in academic fields.

Not many people were aware of Artificial Intelligence, how it worked or its potential uses, until around 1964 when MIT computer Scientist Joseph Weizenbaumwrote Eliza, a program based on Natural Language Processingthat was able to successfully question and respond to human interactions in such a way as to almost sound like a real human being. Eliza, with almost no information about human responses was able to use scripts and pattern  matching to simulate responses that might occur between two people.

The most famous of these simulations, highlighting  AI ability to intersect with modern needs and technology, was DOCTOR. DOCTOR was able to question and respond to a human in such a way so as to almost sound like an actual psychotherapist. As the human subject made statements, DOCTOR asked questions and made statements relevant to the conversation as if it were a present and conscious being… almost.

Over the years  computer scientists, whether academics or industry professionals,  have worked tirelessly to improve upon these developments with the hope of delivering a computer program capable not only to ask and respond, but to understand the context of a conversation. A program that can relate relevant data to responses, thus providing value to the human it’s conversing with, while helping to chart the course of the conversation, just as if you and I were talking over a cup of coffee or across a conference room table.

Why is this important, you may ask? With the introduction of Chatbots, we began to see some of the potential in Artificial Intelligence. Companies could now front-end customer chat interactions that allowed the company to be more responsive to its customers while shortening wait times and deflecting inquiries from the call center, which as we all know are hugely expensive.

The one problem with Chatbots? Customers hated dealing with limited technology that was cold, often incorrect, and frustrating. People are accustomed to dealing with the cold, sterile nature of technology when they type numbers in a phone to be routed but expected a human to be chatting with them. These negative experiences have made a number of companies a little gun shy about implementing true Artificial Intelligence. The last thing a business wants is a customer complaining, especially on Social Media, about a poor customer experience due to a bad interaction with technology.

There is a significant difference between Chatbot technology and true AI, consequently the outcomes and customer experience are proving to be very different. Where a Chatbot is more like an IVR, answering simple questions and routing customers to the correct agent, Artificial Intelligence is aware of the conversation and able to present relevant responses, thereby providing a faster response and shorter customer interaction times and better customer service. I mean, if Eliza’s DOCTOR could simulate a psychotherapist in 1964, what can AI do for your contact center in 2016?

READ MORE