Dec

What Is Conversational AI

                                                         

Conversational Artificial Intelligence solutions can communicate with people in their natural languages. The interactions happen via speech or text – our most common forms of interaction.

The most popular example of a conversational AI solution is chatbot.

The chatbot popularity began in 2016 with Facebook’s announcement  of a developer-friendly platform to build chatbots on Facebook messenger. Soon, chatbots became the buzz of the technological community and spread across various industries. As a next step, toolkits that helped build a bot in five minutes grew popular, companies raced to the market with new bot announcements and the world woke up to a new chatbot-based reality.

A well developed conversational AI chatbot is able to interact on a near-human level. If we think about it, most companies’ customer service and sales centers deal with a core of 6-12 repeating issues. conversational AI software allows companies to develop an intelligent response channel that can cover the most common customer interactions.

Another advantage in using Conversational AI is in the marketing and branding domain. Chatbots allow the companies to stay on their message without veering off course . With AI, the scripts are all written and approved in house. Even when the AI system learns, when the appropriate training techniques are implemented, the system will adhere to the required profrssional verbiage.

 

Interested in reading more? Check out our other blogs:

Towards smarter data - accuracy and precision

                                                   

There is a huge amount of information out there. And it is growing. To make it efficient and increase our competitive advantage we need to evolve and start using information in a smart way, by concentrating on data that drives business value because it is accurate, actionable, and agile. Accuracy is an important measure that determines the quality of data processing solutions.

How accuracy is calculated?

It is easy to do with structured data, because the requirements are formalizable. It is less obvious with unstructured data, e.g. a stream of social feeds, or any data set that involves natural language. Indeed, the sentences of natural language are subject to multiple interpretations, and therefore allow a degree of subjectivity. For example, should a sentence ‘I haven’t been on a sea cruise for a long time’ be qualified for a data set of people interested in going on a cruise? Both answers, yes and no, seem valid.

In these cases an argument was put forward endorsing a consensus approach which polls data providers is the best way to judge data accuracy. This approach essentially claims that attributes with the highest consensus across data providers is the most accurate.

At nmodes we deal with unstructured data all the time because we process natural language messages, primarily from social networks. We do not favor this simplistic approach, as it is considered biased, inviting people to make assumptions based on what they already believe to be true, and making no distinction between precision and accuracy. Obviously the difference is that precision measures what you got right, and accuracy measures both what you got right and what you got wrong. Accuracy is a more inclusive and therefore more valuable characteristic.

Our approach is

a) to validate data against third party independent sources (typically of academic origin) that contain trusted sets and reliable demography. Validating nmodes data against third party sources allows us to verify that our data achieves the greatest possible balance of scale and accuracy.

b) to enrich upon the existing test sets by purposefully including examples ambiguous in meaning and intent, and providing additional levels of categorization to cover these examples.

Accuracy is becoming important when businesses move from rudimentary data use, typical of the first Big Data years, to a more measured and careful approach of today. Understanding how it is calculated and the value it brings helps in achieving long-term sustainability and success.

 

READ MORE

Artificial Intelligence as a Service

                                         

There is a growing demand in the industry for Artificial Intelligence products, from simple chatbots to conversational ecommerce solutions to advanced intelligent systems.

And there is a growing number of AI companies offering such products.

One of the problems however is that AI products currently available on the market require technical sophistication on behalf of the user, such as familiarity with APIs, communication protocols, XML, etc.

nmodes aims to solve this problem. Our position is that the users do not need to be technically savvy to enjoy AI capabilities. We offer our AI solutions as a service, fully hosted, fully supported.

We do not ask for any technical knowledge from our customers. We only want them to tell us the details relevant to the business process they are looking to implement or support and we will take care of the rest.

In particular

1. We train AI to understand and support their own use cases.

2. We host the entire solution, without claiming the ownership of the data we process or use to train our AI.

3. We support all user interfaces ( UI ) required by our customers.

4. We connect to third-party APIs and integrate our AI with third-party components.

Artificial Intelligence as a Service ( AIasS ) that we offer makes new AI technology easier to use increasing its exposure to businesses and organizations worldwide.  

 

READ MORE