Dec

What Is Conversational AI

                                                         

Conversational Artificial Intelligence solutions can communicate with people in their natural languages. The interactions happen via speech or text – our most common forms of interaction.

The most popular example of a conversational AI solution is chatbot.

The chatbot popularity began in 2016 with Facebook’s announcement  of a developer-friendly platform to build chatbots on Facebook messenger. Soon, chatbots became the buzz of the technological community and spread across various industries. As a next step, toolkits that helped build a bot in five minutes grew popular, companies raced to the market with new bot announcements and the world woke up to a new chatbot-based reality.

A well developed conversational AI chatbot is able to interact on a near-human level. If we think about it, most companies’ customer service and sales centers deal with a core of 6-12 repeating issues. conversational AI software allows companies to develop an intelligent response channel that can cover the most common customer interactions.

Another advantage in using Conversational AI is in the marketing and branding domain. Chatbots allow the companies to stay on their message without veering off course . With AI, the scripts are all written and approved in house. Even when the AI system learns, when the appropriate training techniques are implemented, the system will adhere to the required profrssional verbiage.

 

Interested in reading more? Check out our other blogs:

nmodes Is Helping Businesses to Succeed

                                                           

With the launch of the new dashboard nmodes is helping businesses to drive traffic and grow sales.

For example, One of our clients needed to increase traffic to their website while at the same time improve the conversion rate. In other words, they wanted to see more quality traffic.

The client made a concentrated effort on social media, however they were having difficulties in finding the target audience - traditional keywords search resulted in too much noise and did not produce desired outcome.

nmodes dashboard simplified this client’s engagement process. We created a dedicated stream that accurately addressed their targeted audience.  nmodes dashboard is actionable, so their engagement became easy. nmodes technology identifies potential customers accurately, and so their engagement became efficient.

As a result, the click thru rate rose up to 65%, traffic quality improved by 25%, and conversion increased to 6-8%

Another client relied heavily on mainstream dashboards (such as Hootsuite) These tools do not do a good job finding relevant conversations, in the process producing too much noise and forcing client’s community managers to spend long hours manually identifying these relevant conversations. The client manages multiple social account and this type of manual labour was impeding the business, both in terms of costs and efficiency.

nmodes produces highly accurate results in finding relevant conversations that do not require manual clean up. The client started using nmodes solution, and immediately freed a substantial amount of hours which enabled them to consecrate on servicing their customers and acquiring new ones.

 

READ MORE

nmodes Technology - Overview

                                                       

nmodes ability to accurately deliver relevant messages and conversations to businesses is based on its ability to understand these messages and conversations. Once a system understands a sentence or text, it can easily perform a necessary action, i.e. bring a sentence about buying a car to the car dealership, or a complaint about purchased furniture to the customer service department of the furniture company.

Understanding sentences is called semantics. nmodes has developed a strong semantic technology that stand out in a number of ways.

Here is how nmodes technology is different:

1. Low computational power. We don’t use methods and algorithms deployed by almost everyone else in this space. The algorithms we are using allow us to achieve high level of accuracy while significantly reducing the computational power. Most accurate semantic systems, e.g. Google’s, or IBM’s, rely on supercomputers. By comparison our computational requirements are modest to the extreme, yet we successfully compete with these powerhouses in terms accuracy and quality of results.

2. Private data sources. We work extensively with Twitter and other social networks, yet at the same time we process enterprise data.  Working with private data sources means system should know details specific only to this particular data source. For example, when if a system handles web self-service solution for online electronics store it learns the names, prices, and other details of all products available at this store.  

3. User driven solution. Our system learns from user’s input. Which makes it extremely flexible and as granular as needed. It supports both generic topics, for example car purchasing, and conversations concentrating on specific type of car, or a model.

READ MORE