Jul

Lessons for Businesses from Brazil’s World Cup Disaster

1. Mental, or psychological, state of your team is important: you can put so much pressure on people before they crack. Brazil players didn’t become unqualified professionals overnight. They failed because they were overwhelmed by their country’s expectations, distorted sense of history, and the right to win considered divine. They were too emotionally charged, not in the proper state of mind to compete. So better keep calm, relaxed atmosphere in your team even before launch, or important deadline.

2. Manage customer expectations. Brazil were ramping them up unreasonably. Aggressive messages like the 6th[title] is coming, statements by their coach about two more steps to heaven massively backfired by creating an unhealthy emotional frenzy in the society, which in return influenced the players (see 1.)

3. Logic, organization is the key to successful execution. Germany are not a great team. But they are very well organized. They had a detailed game-plan where every team member knew his task and several different scenarios where prepared. They were able to adjust when the situation on the field changed to squeeze maximum advantage. Sounds simple? That’s because it is. 

Interested in reading more? Check out our other blogs:

Meet Eliza, the Mother of AI

                                                             

Meet Eliza, the Mother of AI..

Today, Artificial Intelligence seems to be the buzz of every major enterprise. Salesforce is formally announcing Einstein this fall, IBM has worked on Watson for years now, and after 20 years of working with AI, Microsoft has made a few attempts to bring the technology to the market. With all this activity, you may be asking yourself what kind of impact AI will have on you and your business, and where you might want to look to investigate the possibilities Artificial Intelligence represents.

Before we discuss how AI will impact customer support and consumer experience, and how you may leverage it in your contact center, I thought it would be fun to take a look where AI got its start.

The term AI was coined by computer scientist John McCarthyin 1956 who subsequently went on to create the Dartmouth Conference to advance the ideas and technologies associated with machine intelligence. While this collective of thought leaders and scientists made huge advancements through programs at MIT and others, most of their work was only circulated in academic fields.

Not many people were aware of Artificial Intelligence, how it worked or its potential uses, until around 1964 when MIT computer Scientist Joseph Weizenbaumwrote Eliza, a program based on Natural Language Processingthat was able to successfully question and respond to human interactions in such a way as to almost sound like a real human being. Eliza, with almost no information about human responses was able to use scripts and pattern  matching to simulate responses that might occur between two people.

The most famous of these simulations, highlighting  AI ability to intersect with modern needs and technology, was DOCTOR. DOCTOR was able to question and respond to a human in such a way so as to almost sound like an actual psychotherapist. As the human subject made statements, DOCTOR asked questions and made statements relevant to the conversation as if it were a present and conscious being… almost.

Over the years  computer scientists, whether academics or industry professionals,  have worked tirelessly to improve upon these developments with the hope of delivering a computer program capable not only to ask and respond, but to understand the context of a conversation. A program that can relate relevant data to responses, thus providing value to the human it’s conversing with, while helping to chart the course of the conversation, just as if you and I were talking over a cup of coffee or across a conference room table.

Why is this important, you may ask? With the introduction of Chatbots, we began to see some of the potential in Artificial Intelligence. Companies could now front-end customer chat interactions that allowed the company to be more responsive to its customers while shortening wait times and deflecting inquiries from the call center, which as we all know are hugely expensive.

The one problem with Chatbots? Customers hated dealing with limited technology that was cold, often incorrect, and frustrating. People are accustomed to dealing with the cold, sterile nature of technology when they type numbers in a phone to be routed but expected a human to be chatting with them. These negative experiences have made a number of companies a little gun shy about implementing true Artificial Intelligence. The last thing a business wants is a customer complaining, especially on Social Media, about a poor customer experience due to a bad interaction with technology.

There is a significant difference between Chatbot technology and true AI, consequently the outcomes and customer experience are proving to be very different. Where a Chatbot is more like an IVR, answering simple questions and routing customers to the correct agent, Artificial Intelligence is aware of the conversation and able to present relevant responses, thereby providing a faster response and shorter customer interaction times and better customer service. I mean, if Eliza’s DOCTOR could simulate a psychotherapist in 1964, what can AI do for your contact center in 2016?

READ MORE

CHATBOT PLATFORMS. How to choose the right one?

   
Chatbot platforms are essential tools if you need to build and run a chatbot.
There are many available on the market, big and small, popular and not so much.

Here are some useful thoughts that should help you navigate the complex world of chatbots and conversational AI solutions.

All chatbot platforms can be split into two categories: those that let you create chatbots without any programming, and those that require programming. Now, the idea that you don’t need to possess technical knowledge to build a chatbot seems appealing but the reality is not so rosy. In fact, I have yet to see a professional chatbot created without coding.
Chatbots rely on sophisticated algorithms and advanced knowledge of linguistics. These technologies are so complex that at the moment there are no plug-and-play solutions available. The companies like Chatfuel, Manychat, Flow XO and many others are attempting to fill that void and offer chatbot platforms that are simple in use. The best way to make the chatbot creation simpler is by dropping the need to code them. However this simplicity comes at a price: chatbots made without coding are limited, rigid and in general, primitive.
So to summarize: if you want to impress your girlfriend use Chatfuel. If you need a professional chatbot that delivers on your business goals and provides customer satisfaction use advanced chatbot platforms with programming capabilities.

One of the main, if not the main, tasks of the chatbot platforms is to connect your chatbot to the user interfaces. There are many ways for your chatbot to interface with the world: on Facebook messenger, on the website, on the mobile app, via SMS, on Twitter , on Skype, on Slack, on Telegram, and more. A good chatbot platform should seamlessly connect the chatbot to most of these channels. Chatbot platforms do not make your chatbot smarter. For this you need AI Engines (brief disucssion on AI Engines: http://nmodes.com/entry/2018/03/29/what-are-ai-engines-and-how-choose-one/).

For best results create your chatbot on a chatbot platform, then connect it to AI engine.

One of the top chatbot platforms on the market is Microsoft Bot Framework. It is robust, powerful, with a wide variety of useful functionality built-in. Another good chatbot platform is DialogFlow. DialogFlow has a slightly different architecture in the sense that it is a chatbot platform and an AI Engine all in one interface.

Chatbot platforms can be used to create conversation flow for your chatbot. There are several schools of thought here: some prefer to delegate conversation flow to AI engines. Chatfuel and other tools with the emphasis on simplicity (build your chatbot in minutes, no coding necessary) offer easy graphical interfaces for conversation flow creation. And there is always a reliable option to create conversation flow in an old-fashioned way, programmatically.

Which option to choose? Depends on your chatbot requirements and the business needs the chatbot is expected to address.And if you have questions feel free to ask: http://http://nmodes.com/contact-us/

READ MORE