Dec

Intent-driven Data Critical for Sales Growth

One of the most central causes of missed growth opportunities and overspending is a failure on the part of businesses to create strategies that are tailored to the intent of the consumer. Recognizing and harnessing visitor intent brings increased engagement with relevant messages and calls to action.

Once a business identifies purchase intenders it can create content that aligns with their needs and desires in order to increase the likelihood of conversion. Consequently it can pick up on pre-sale signals from visitors in the research phase and drive lead-nurturing initiatives accordingly. The ability to identify this spectrum of visitor intent is key to creating relevant engagement campaigns that drive sales.

nmodes has been at the forefront of delivering consumer intent to businesses.

We sort the intents based on conversation topics, called ‘streams’.

Here is a stream of people looking for a hotel:

A stream of people who are getting married:

A stream of people thinking of going on a cruise:

Interested in reading more? Check out our other blogs:

The End of Digital Monitoring Paradigm

                                 

Digital industry is changing rapidly.

For the last decade analysis of social chatter and capture of consumer sentiment was considered the cutting edge of the marketing strategy.  In these early days of the new era of digital information businesses were told to listen to what market is saying about them. They were educated on the importance of media monitoring and the advantages it creates for strategic growth.

This picture has become outdated.

Listening to Big Data, in all its aspects and forms, is no longer enough. After you successfully listened and understood what customer said the next natural step would be to act, or respond. And so the digital domain is now spreading to include responses, with a host of innovative technological solutions reshaping the field rapidly.  Advances in artificial intelligence in particular create disruptive scalable opportunities in the space traditionally known for its slow manual progression.

Facebook was among the firstto enter the market, introducing bots into the process of connecting users with brands. Then there was Microsoft's turn.

Following these developments bots became the hottest trend in Silicon Valley in 2016.

nmodes fits seamlessly into this new world order. We deliver AI solutions that power business sales process. Our listening solution accurately monitors and captures real-time needs and interests of individual customers within the defined audience. And our Intelligent Assistant solution brings scalability to responses without compromising on quality.  

 

READ MORE

nmodes Technology - Overview

                                                       

nmodes ability to accurately deliver relevant messages and conversations to businesses is based on its ability to understand these messages and conversations. Once a system understands a sentence or text, it can easily perform a necessary action, i.e. bring a sentence about buying a car to the car dealership, or a complaint about purchased furniture to the customer service department of the furniture company.

Understanding sentences is called semantics. nmodes has developed a strong semantic technology that stand out in a number of ways.

Here is how nmodes technology is different:

1. Low computational power. We don’t use methods and algorithms deployed by almost everyone else in this space. The algorithms we are using allow us to achieve high level of accuracy while significantly reducing the computational power. Most accurate semantic systems, e.g. Google’s, or IBM’s, rely on supercomputers. By comparison our computational requirements are modest to the extreme, yet we successfully compete with these powerhouses in terms accuracy and quality of results.

2. Private data sources. We work extensively with Twitter and other social networks, yet at the same time we process enterprise data.  Working with private data sources means system should know details specific only to this particular data source. For example, when if a system handles web self-service solution for online electronics store it learns the names, prices, and other details of all products available at this store.  

3. User driven solution. Our system learns from user’s input. Which makes it extremely flexible and as granular as needed. It supports both generic topics, for example car purchasing, and conversations concentrating on specific type of car, or a model.

READ MORE