Apr

The Curious Case of AI Technology

                                                         

                                                                 

The notion of Artificial Intelligence has been around for a while.

Yet, unlike other prominent technological innovations such as electric cars or the processor speed, its progress has not been linear.

In fact, as far as industrial impact is concerned, there were times when allegedly there was no progress at all.

The widespread fascination with AI started several generations ago, in 80-s of the last century. This is when a pioneering work of Noam Chomsky on computational grammar led to a belief that human language capabilities in particular, and human intelligence in general, can be straightforwardly algorithmized. The expectation was that the AI-based programs will have a significant and lasting industrial impact.

But despite unabridged enthusiasm and significant amount of effort the practical results were minuscule. The main outcome was disappointment and AI become somewhat of a dirty word for the next 20 years. The research became mostly confined to scientific labs, and although some notable results have been achieved, such as development of neural networks and Deep Blue machine beating acting world champion in chess, the general community was largely unaffected.

The situation started to change about 5-10 years ago with a new wave of industrial research and development.

We now experience somewhat of a renaissance of AI with bots, semantic search, self-service systems, intelligent assistant programs like Siri are taking over. In addition, optimists of science are bragging confidently about reaching singularity during our lifetime.

The progress this time seems to be genuine indeed. There are indisputable breakthroughs, but even more impressive is the width of industries adopting AI solutions, from social networks to government services to robotics to consumer apps.

For the first time AI is expected to have a huge impact on the community in general.

There is this vibe around AI which hasn’t been felt in years. And with power comes responsibility, as they say, - prominent thinkers such as Stephen Hawking raised their voice against the dangers of powerful AI for humanity. Still, as far as current topic is concerned, this is all part of the vibe.

Despite all the plethora of upcoming opportunities, it is important to observe that we are yet to advance from anticipation stage. AI has not became a major industrial asset, an AI firm has not reached a unicorn status, and despite the fact that major industrial players such as IBM are pivoting towards  fully-fledged AI-based model it has not manifested itself in business results.

We are still waiting for AI-based technology to disrupt the global community.

The overall expectation is that it is about to happen. But it hasn’t happened yet.

 

Interested in reading more? Check out our other blogs:

Microsoft AI products

                                                 

Microsoft product strategy has always been and still remains that of ‘zero alternative’. Their ultimate policy is for their customers to have no choice but to embrace only Microsoft products. Consequently they created and are offering products and solutions in (almost) every segment of IT enterprise and consumer market, including, but certainly not limited to, their own data base, their own cloud services, operating system, office tools, programming language, and many more.

Not only do Microsoft offer wide variety of products, they tie them up together in a unified ecosystem that makes it easy for components to connect and interact. At the same time, this ecosystem is hostile to non-Microsoft products.

Microsoft strategy for the burgeoning, fast growing AI segment is similar:

Create products to address all parts of the AI market, add them to the ecosystem to ensure easy compatibility from within and difficulty of use from outside.

Currently the products on offer are:

- Microsoft AI engine, called LUIS. It is supposed to compete with other major industrial AI systems such as IBM Watson, and has similar training methodology. It offers webhook interfacing via endpoints.  

- Microsoft chatbot building platform, called, surprisingly, Microsoft Bot Platform. It addresses the popular demand for easy chatbot design and provides seamless connectivity with main user interfaces, such as web interface, SMS, mobile, and messaging platforms.

- In addition Microsoft offers their own messaging platform in Skype.

The main advantage of  using Microsoft AI products is the built-in connectivity with user interfaces.

The main disadvantage is in their ‘zero alternative’ policy - once you’ve chosen a Microsoft product you are likely will be forced to choose only Microsoft products for the duration of your project.

 

READ MORE

Social selling for businesses

Social selling is one of the hottest buzzwords in the technology market. The popularity of social networks made the customer interaction and buyers hunting easier than before. More and more consumers are using social media to find deals, research products and make recommendations.

From the seller’s perspective the efficient use of social media is based on the mastery of following two major steps:

1. Finding the relevant audience,

2. Engaging with that audience.

The first step should be automated. This is exactly where the promise of Big Data, or Smart Data, as they now begin to call it, is supposed to come into fruition. Finding relevant information in the ocean of social data is the poster example of how Smart data can help businesses in the new world defined by computerized systems and networks. The companies should be able to use programs and solutions that accurately and efficiently deliver relevant data. If the company is spending time to sift through the ever increasing informational stream without automating the process, it is wasting precious time thus compromising its business growth and eventually losing competitive edge.

 The second step however is inherently manual. it is not a good idea to automate the engagement process. Social networks are designed to build trust, and trust cannot be won automatically. So it requires time and effort and knowledge. It also requires patience - trust cannot be built in minutes.

It is important that businesses looking to add social media into their arsenal of revenue channels, and we believe that all businesses should do just that, grasp this two-steps process. A clear understanding of the nature and requirements for each of the steps helps to plan strategically, manage the resources properly and avoid costly mistakes.

 

                               

READ MORE