Jan

Social selling for businesses

Social selling is one of the hottest buzzwords in the technology market. The popularity of social networks made the customer interaction and buyers hunting easier than before. More and more consumers are using social media to find deals, research products and make recommendations.

From the seller’s perspective the efficient use of social media is based on the mastery of following two major steps:

1. Finding the relevant audience,

2. Engaging with that audience.

The first step should be automated. This is exactly where the promise of Big Data, or Smart Data, as they now begin to call it, is supposed to come into fruition. Finding relevant information in the ocean of social data is the poster example of how Smart data can help businesses in the new world defined by computerized systems and networks. The companies should be able to use programs and solutions that accurately and efficiently deliver relevant data. If the company is spending time to sift through the ever increasing informational stream without automating the process, it is wasting precious time thus compromising its business growth and eventually losing competitive edge.

 The second step however is inherently manual. it is not a good idea to automate the engagement process. Social networks are designed to build trust, and trust cannot be won automatically. So it requires time and effort and knowledge. It also requires patience - trust cannot be built in minutes.

It is important that businesses looking to add social media into their arsenal of revenue channels, and we believe that all businesses should do just that, grasp this two-steps process. A clear understanding of the nature and requirements for each of the steps helps to plan strategically, manage the resources properly and avoid costly mistakes.

 

                               

Interested in reading more? Check out our other blogs:

Building 24x7x365 Customer Support and Online Sales... FOR FREE (Almost)

                                                             

We’ve all seen the numbers and they tell us that customers are more likely to make a purchase if they’re able to speak to a representative at the time of purchase. Study after study shows that if you can prevent even the smallest percentage of customer defection revenues and profitability can literally skyrocket as much as 80%. Just as important, the faster is your service the better is customer experience.

The same can be said for customer support. More than 70% of customers say that responsive customer support providing fast, courteous, relevant and contextual answers to their inquiries are the most important factors in determining the quality of customer service and the likelihood of that customer doing business with the company in the future.

As our world becomes even more “on-demand” and global, providing around the clock sales and customer support is quickly becoming a key differentiator. Customer’s desire to do business with companies on their own schedule and terms are driving financial growth and customer loyalty across all sectors and industries. Companies that neglect this “always on” requirement not only lose out, but need to find ways to be competitive.

Unfortunately, only the largest companies have the financial resources to deliver 24x7 customer support and sales operations. Still many of the largest companies can’t justify the expense of building out and staffing a 24 hour contact center. While outsourcing to a BPO is always an option, statistics show a diminishing return for outsource customer and sales support operations.

As customers continue to drive up the use of chat and social communications for customer support and sales, along with the incredible growth in Artificial Intelligence technology, smart companies on the forefront of customer service now have the ability to offer around the clock service for a large portion of their customers.

Think about this: While the average phone support call has previously been measured at almost 6 minutes, the average chat session lasts just 42 seconds, indicating that the vast majority of customer support issues are simple and only require limited information in order to leave a customer informed and satisfied with the interaction.

Today Artificial Intelligence can deliver a personalized, informed, and contextually relevant response to just about any question related to most customer inquiries. Add on the fact that AI actually “learns” as it interacts with people and information and the value to the customer and the vendor actually increases over time.  Wouldn’t we all like to have immediate service with zero wait times and fast, courteous response that immediately addresses our needs? I know I would.

Implementing Artificial Intelligence for customer service comes down to an application cost that, when amortized over the number of chat or social sessions it can handle, reduces customer support costs to as little as 10% of traditional contact center and agent expenses.

The one objection to relying on Artificial Intelligence in the contact center is the customer experience. There’s enough bad press out there about Chatbots and broken, robotic responses that are sometimes irrelevant that some customer support professionals are wary of any form or automation. My response to that is, while those were valid concerns; just take a look at Siri today vs. 2 years ago. The quality of responses has dramatically improved, as has the customer perception and usefulness.

What are your thoughts about Artificial Intelligence in the contact center? We’d love to hear from you.

READ MORE

AI unmasked: Have chatbots failed?

It is becoming increasingly popular to say that chatbots have failed and are overhyped.

While it is true that in many cases expectations from chatbots significantly exceed the results on the ground, the anticipation of chatbots’ demise are somewhat premature. 

One of the main problems for chatbots is that the market is inundated with low quality solution providers who deliver low quality results. This happened because conversational AI seems to have low entry barriers. Unlike other recent technological darlings such as space technology or renewable energy, conversational AI is purely software and therefore does not require vast sums of initial investment. 

What this approach is missing however,  is that conversational AI, in addition to being a software, also requires an accurate understanding of how language works. And there is a limited number of people in the world that do have such understanding.

When conversational AI is delivered by AI experts who understand the way human language works, the results are good and convincing, just as how you would expect them to be.

Suffering from unsatisfactory product quality is a common problem for many new and emerging industries.  The rules of the market dictate that most of the low quality players will eventually disappear. Poorly created chatbots will therefore not be around for too long.

READ MORE