Nov

Towards smarter data - accuracy and precision

                                                   

There is a huge amount of information out there. And it is growing. To make it efficient and increase our competitive advantage we need to evolve and start using information in a smart way, by concentrating on data that drives business value because it is accurate, actionable, and agile. Accuracy is an important measure that determines the quality of data processing solutions.

How accuracy is calculated?

It is easy to do with structured data, because the requirements are formalizable. It is less obvious with unstructured data, e.g. a stream of social feeds, or any data set that involves natural language. Indeed, the sentences of natural language are subject to multiple interpretations, and therefore allow a degree of subjectivity. For example, should a sentence ‘I haven’t been on a sea cruise for a long time’ be qualified for a data set of people interested in going on a cruise? Both answers, yes and no, seem valid.

In these cases an argument was put forward endorsing a consensus approach which polls data providers is the best way to judge data accuracy. This approach essentially claims that attributes with the highest consensus across data providers is the most accurate.

At nmodes we deal with unstructured data all the time because we process natural language messages, primarily from social networks. We do not favor this simplistic approach, as it is considered biased, inviting people to make assumptions based on what they already believe to be true, and making no distinction between precision and accuracy. Obviously the difference is that precision measures what you got right, and accuracy measures both what you got right and what you got wrong. Accuracy is a more inclusive and therefore more valuable characteristic.

Our approach is

a) to validate data against third party independent sources (typically of academic origin) that contain trusted sets and reliable demography. Validating nmodes data against third party sources allows us to verify that our data achieves the greatest possible balance of scale and accuracy.

b) to enrich upon the existing test sets by purposefully including examples ambiguous in meaning and intent, and providing additional levels of categorization to cover these examples.

Accuracy is becoming important when businesses move from rudimentary data use, typical of the first Big Data years, to a more measured and careful approach of today. Understanding how it is calculated and the value it brings helps in achieving long-term sustainability and success.

 

Interested in reading more? Check out our other blogs:

The Advantage of Social Engagement for Business, in Simple Words

                                                   

Much is being said about social networks and their importance for businesses. The amount of analysis, explanations, and advice keeps on growing, while the matter is being investigated from every possible angle, real and imaginary.  

As for me, the need for businesses to market and sell on social can be explained by a simple argument.

Here it is.

The principle advantage of social networks for a business over other mediums is in the social networks’ potential to build trust. Traditional marketing mediums, such as TV, newspapers, internet, radio, etc. are not designed to build trust. They are information channels, or scaling vehicles, or sales means, but their primary goal is not to build trust. Social networks, on the other hand, are exactly this - a trust building tools.

And herein lies their biggest advantage in today’s market. The endless variety of options consumers have and the ever growing dissatisfaction with traditional aggressive marketing methods, such as commercials or banners, means that creating trust between businesses and their audiences is now the most efficient way to attract customers. The way that guarantees long-term sustainability and growth.

This is, simply put, the reason for businesses to embrace the social.

 

READ MORE

MAKING AI MAINSTREAM



We are experiencing a strong demand for conversational AI solutions. It is coming from every corner of the B2C market. It is growing by the day.

Conversational AI is becoming increasingly popular among the consumer facing business community. It is easy to see why - AI offers sales and customer service scalability and therefore is critical for the long-term success of a business.

Conversational AI solutions such as chatbots, voice bots, and virtual assistants provide much needed speed and efficiency, in an age where the rapid advancement of technology makes them virtually the only sustainable customer service solution.

Bu there is a catch - AI is complicated. Mainstream businesses do not have in house AI expertise. And it is not part of their business model to develop such expertise.

Today’s market offer several good conversational AI solutions, such as IBM Watson or Google DialogFlow. However, getting a business value out of them requires the very AI expertise that mainstream companies do not possess.

So what can be done?

Any AI solution should follow these three steps in order for the mainstream business community to fully benefit from it:

  1. Conversational AI should come as a service,
  2. The service should be available in natural language,
  3. The service should be fully personalized.  
 In the next several posts we will explore how the AI industry, including nmodes, is moving towards achieving these goals.
READ MORE