Nov

Towards smarter data - accuracy and precision

                                                   

There is a huge amount of information out there. And it is growing. To make it efficient and increase our competitive advantage we need to evolve and start using information in a smart way, by concentrating on data that drives business value because it is accurate, actionable, and agile. Accuracy is an important measure that determines the quality of data processing solutions.

How accuracy is calculated?

It is easy to do with structured data, because the requirements are formalizable. It is less obvious with unstructured data, e.g. a stream of social feeds, or any data set that involves natural language. Indeed, the sentences of natural language are subject to multiple interpretations, and therefore allow a degree of subjectivity. For example, should a sentence ‘I haven’t been on a sea cruise for a long time’ be qualified for a data set of people interested in going on a cruise? Both answers, yes and no, seem valid.

In these cases an argument was put forward endorsing a consensus approach which polls data providers is the best way to judge data accuracy. This approach essentially claims that attributes with the highest consensus across data providers is the most accurate.

At nmodes we deal with unstructured data all the time because we process natural language messages, primarily from social networks. We do not favor this simplistic approach, as it is considered biased, inviting people to make assumptions based on what they already believe to be true, and making no distinction between precision and accuracy. Obviously the difference is that precision measures what you got right, and accuracy measures both what you got right and what you got wrong. Accuracy is a more inclusive and therefore more valuable characteristic.

Our approach is

a) to validate data against third party independent sources (typically of academic origin) that contain trusted sets and reliable demography. Validating nmodes data against third party sources allows us to verify that our data achieves the greatest possible balance of scale and accuracy.

b) to enrich upon the existing test sets by purposefully including examples ambiguous in meaning and intent, and providing additional levels of categorization to cover these examples.

Accuracy is becoming important when businesses move from rudimentary data use, typical of the first Big Data years, to a more measured and careful approach of today. Understanding how it is calculated and the value it brings helps in achieving long-term sustainability and success.

 

Interested in reading more? Check out our other blogs:

Travel Chatbots Update

                                         

These are early days for travel bots. They mostly specialize in customer service, customer information and sometimes online booking. Advanced AI technology is good and getting better by the day, but it does not replace a person. And that's unlikely to change for a while.

In order to create a positive and enjoyable experience it is imperative to have a clear understanding of what bots do well and what they don’t.

One area where they have clear advantage over humans is response speed. Using bots makes your travel business scalable. Bot can handle mutlple user conversations simultaneously and replies instantly.

The part of the bot technology that needs significant improvement is understanding of the meaning of what customer said. The solution is to take the user off the bot when this stage of the converastion is reached. One of the popular techniques is to redirect the user from bot to the website when the questions get complicated. The majority of users are at ease with website navigation where they find themselves in the familiar environment.

This approach allows to utilize the scalability of the chatbot while maintaining the high level of customer service.

READ MORE

Amazing Social Data for Travel Companies

                                                   

A huge number of travel related conversations is happening every day on social networks.

Based on nmodes Twitter data (averaged over 1.5 years of observations) there is

- 1 conversation every 15 minutes in which people notify that they are going to NYC;

- 1 conversation every 43 minutes in which people from the USA express intent to go to Europe;

- 1 conversation every 4 minutes with interest or intent to go on vacation;

- 1 conversation every 3 hours in which people are asking for hotel recommendations.

And this is just a tip of the iceberg.

(nmodes currently has 70+ travel-related topics and intents, and growing.)

For travel companies all these are qualified leads, potential customers, and attentive audience.

Reaching out to these potential customers results in a positive consumer experience, brand recognition, and, yes, sales!

READ MORE