Jul

How nmodes Intent API Improves Social Intelligence

Social media generates a vast amount of data. There are 500 million daily messages on Twitter alone. Still more data on Facebook, Google+, LinkedIn and other social networks. Some of this data is useful to businesses, in fact, it is extremely useful.

A business can use social data to generate actionable insights about customers, competitors and their company strategy. Social information empowers departments and teams, and when used correctly, creates a strong sustainable bond between businesses and their customers.

nmodes Intent API helps businesses to execute their social strategy efficiently. Here are the major elements of social strategy Intent API contributes to:

1. Listening. Intent API finds customer intent with any level of granularity. You might want to know who is looking to buy shoes in general, or looking to buy flip-flops in particular, or interested in buying only Nike footware, or interested in buying sneakers in New York region.

2. Sales and marketing.  Intent API understands what stage in the purchase process your customer is in. Intent API tells if a customer is ready to buy, or is in the awareness stage, or considering the purchase but not ready yet, and so on.

3. Social intelligence. Intent API delivers meaningful intents and behavioral information on a large scale and for all verticals. Any insights and topics, as long as somebody is conversing on this topic, are available.

4. Teams and projects. Intent API channels information to the relevant departments within the company. Sales prospects should go to sales department, complaints to customer service, brand conversations to the marketers, and technical issues to tech support.

Interested in reading more? Check out our other blogs:

AI unmasked: Have chatbots failed?

It is becoming increasingly popular to say that chatbots have failed and are overhyped.

While it is true that in many cases expectations from chatbots significantly exceed the results on the ground, the anticipation of chatbots’ demise are somewhat premature. 

One of the main problems for chatbots is that the market is inundated with low quality solution providers who deliver low quality results. This happened because conversational AI seems to have low entry barriers. Unlike other recent technological darlings such as space technology or renewable energy, conversational AI is purely software and therefore does not require vast sums of initial investment. 

What this approach is missing however,  is that conversational AI, in addition to being a software, also requires an accurate understanding of how language works. And there is a limited number of people in the world that do have such understanding.

When conversational AI is delivered by AI experts who understand the way human language works, the results are good and convincing, just as how you would expect them to be.

Suffering from unsatisfactory product quality is a common problem for many new and emerging industries.  The rules of the market dictate that most of the low quality players will eventually disappear. Poorly created chatbots will therefore not be around for too long.

READ MORE

Meet Eliza, the Mother of AI

                                                             

Meet Eliza, the Mother of AI..

Today, Artificial Intelligence seems to be the buzz of every major enterprise. Salesforce is formally announcing Einstein this fall, IBM has worked on Watson for years now, and after 20 years of working with AI, Microsoft has made a few attempts to bring the technology to the market. With all this activity, you may be asking yourself what kind of impact AI will have on you and your business, and where you might want to look to investigate the possibilities Artificial Intelligence represents.

Before we discuss how AI will impact customer support and consumer experience, and how you may leverage it in your contact center, I thought it would be fun to take a look where AI got its start.

The term AI was coined by computer scientist John McCarthyin 1956 who subsequently went on to create the Dartmouth Conference to advance the ideas and technologies associated with machine intelligence. While this collective of thought leaders and scientists made huge advancements through programs at MIT and others, most of their work was only circulated in academic fields.

Not many people were aware of Artificial Intelligence, how it worked or its potential uses, until around 1964 when MIT computer Scientist Joseph Weizenbaumwrote Eliza, a program based on Natural Language Processingthat was able to successfully question and respond to human interactions in such a way as to almost sound like a real human being. Eliza, with almost no information about human responses was able to use scripts and pattern  matching to simulate responses that might occur between two people.

The most famous of these simulations, highlighting  AI ability to intersect with modern needs and technology, was DOCTOR. DOCTOR was able to question and respond to a human in such a way so as to almost sound like an actual psychotherapist. As the human subject made statements, DOCTOR asked questions and made statements relevant to the conversation as if it were a present and conscious being… almost.

Over the years  computer scientists, whether academics or industry professionals,  have worked tirelessly to improve upon these developments with the hope of delivering a computer program capable not only to ask and respond, but to understand the context of a conversation. A program that can relate relevant data to responses, thus providing value to the human it’s conversing with, while helping to chart the course of the conversation, just as if you and I were talking over a cup of coffee or across a conference room table.

Why is this important, you may ask? With the introduction of Chatbots, we began to see some of the potential in Artificial Intelligence. Companies could now front-end customer chat interactions that allowed the company to be more responsive to its customers while shortening wait times and deflecting inquiries from the call center, which as we all know are hugely expensive.

The one problem with Chatbots? Customers hated dealing with limited technology that was cold, often incorrect, and frustrating. People are accustomed to dealing with the cold, sterile nature of technology when they type numbers in a phone to be routed but expected a human to be chatting with them. These negative experiences have made a number of companies a little gun shy about implementing true Artificial Intelligence. The last thing a business wants is a customer complaining, especially on Social Media, about a poor customer experience due to a bad interaction with technology.

There is a significant difference between Chatbot technology and true AI, consequently the outcomes and customer experience are proving to be very different. Where a Chatbot is more like an IVR, answering simple questions and routing customers to the correct agent, Artificial Intelligence is aware of the conversation and able to present relevant responses, thereby providing a faster response and shorter customer interaction times and better customer service. I mean, if Eliza’s DOCTOR could simulate a psychotherapist in 1964, what can AI do for your contact center in 2016?

READ MORE