Apr

NMODES at Collision 2019



While Toronto is charged with hosting the Collision - "North America's fastest-growing tech conference" this year, nmodes is excited to make its first appearance among designated start-ups who have been selected to demo their products to conference visitors, potential investors, tech-enthusiasts and business executives.

nmodes, a year and a half in the market, offers a conversational product that uses AI to provide its customers with a scalable solution to execute 24/7/365 marketing acquisition and customer experience programs. While nmodes has already garnered its global presence with 40+ clients, North American market continues to be most enterprising for AI Chatbots and Voicebots.   Collision Tech Event offers an exciting opportunity for nmodes team to take its networking game a notch higher and pitch it to businesses looking to catch-up with the AI space and be early adopters of hottest AI products available in the market.

How nmodes is different than other chatbots?

AI space is nothing new to the tech world as chatbots, virtual assistants and voice bots are finding their commercial contribution toward improving the customer experience of brands. nmodes continues to work closely with the businesses focusing on helping brands drive double digit growth in lead conversions and engagement rates.

Three key market differentiators for nmodes:

  1. 1. Interlacing marketing and customer experience

nmodes chatbots are custom built for the brands.  nmodes solutions support full customer lifecycle from lead generation to marketing campaigns to scheduling demos, to gathering feedback and understanding engagement patterns of existing customers.

  1. 2. Lifetime AI training

nmodes solutions promise to work with progressive AI capabilities that are built to recognize old and new communication patterns and form a sensible response template that is malleable and fulfills the intent of desired conversation for the customers.

Nmodes solutions work on three principles while conversing with the customers.

A) Keep business context

nmodes solutions remember the customer’s history and their presence in the sales cycle and hence conversations are based upon the context of customer for the brand.

B) Data personalization

personalization of conversations focuses on collecting different data points from all internal and external data sources, helping brands deliver tailored and one-on-one predictive interactions.

C) Easy to use analytics

nmodes advanced dashboards uncover detailed analytics and insights on customer conversion rates, engagement rates and listen upon most common conversations to help brands better align their marketing communications and customer experience strategies.




Interested in reading more? Check out our other blogs:

How nmodes Intent API Improves Social Intelligence

Social media generates a vast amount of data. There are 500 million daily messages on Twitter alone. Still more data on Facebook, Google+, LinkedIn and other social networks. Some of this data is useful to businesses, in fact, it is extremely useful.

A business can use social data to generate actionable insights about customers, competitors and their company strategy. Social information empowers departments and teams, and when used correctly, creates a strong sustainable bond between businesses and their customers.

nmodes Intent API helps businesses to execute their social strategy efficiently. Here are the major elements of social strategy Intent API contributes to:

1. Listening. Intent API finds customer intent with any level of granularity. You might want to know who is looking to buy shoes in general, or looking to buy flip-flops in particular, or interested in buying only Nike footware, or interested in buying sneakers in New York region.

2. Sales and marketing.  Intent API understands what stage in the purchase process your customer is in. Intent API tells if a customer is ready to buy, or is in the awareness stage, or considering the purchase but not ready yet, and so on.

3. Social intelligence. Intent API delivers meaningful intents and behavioral information on a large scale and for all verticals. Any insights and topics, as long as somebody is conversing on this topic, are available.

4. Teams and projects. Intent API channels information to the relevant departments within the company. Sales prospects should go to sales department, complaints to customer service, brand conversations to the marketers, and technical issues to tech support.

READ MORE

WHAT IS AI TRAINING



AI training is a critical part of conversational AI solutions, a part that makes AI software different from any kind of software previously created.
AI training is not coding.
Unlike all other existing software which is fully coded.

Let us consider a simple example:
We create chatbots for two companies, one company is selling shoes, another is selling cars. From the software standpoint it is one chatbot solution running as an online service accessed remotely or a program available locally. In both cases they are two identical instances of the same software (one instance for the shoes company, another for the cars company).
Yet, for the first company the chatbot is supposed to talk about flip-flops, summer shoes, high heels and so on. For the second company, however, the chatbot is not expected to know any of that. Instead, the chatbot should be able to support conversations about car brands, car models, should know how to tell Toyota Camry from Toyota Corolla, etc. This shoes and cars knowledge is not programmable. It is trainable. It is not coded, instead it is a part of language processing capability that AI solutions like chatbots have. And herein lies the major differentiation and advantage of the AI solutions compared to traditional software.

How to train AI?
There are several ways to do it. Sometimes AI system can train itself, improve its linguistic ability over time. It also can be trained by professional linguists. And in some cases, by the users. The latter is the desirable scenario because businesses know better than anybody else what they want their chatbot to talk about.
It is not easy, given the existing state of AI technology, and usually requires a high level of technical knowledge. You may have heard mentions of intents and entities in chatbot discussions. These are examples of linguistic elements AI training is currently based on.
Without proper understanding of what these linguistic elements are and how language acquisition process works in existing AI systems it is better to leave AI training to professional linguists.

READ MORE