Aug

Scalable Yet Personalized

How to offer businesses and organizations a solution that personalizes and scales consumer interaction process at the same time?

Personalizing the user relationship process. Today end users and consumers demand to be targeted individually and to be approached based on their actual interests. nmodes AI (Artificial Intelligence) powered solution helps organizations accurately identify user needs in real time. Our solution delivers information on each user individually thus providing the necessary level of personalization required of the successful customer service.

Scaling the user relationship process: Once the organization identifies a user and a problem that needs to be addressed, next step is reaching out to that user individually. Currently this is a manual non-scalable procedure. nmodes AI (Artificial Intelligence) solution provides automated assistance to human personnel, including substitution when deemed appropriate, thus making the entire process scalable.

Today more than 90% of all organizations and businesses rely on solutions based on keywords, even though these solutions provide low quality results not sufficient for the new generation of personalized scalable services.

nmodes solution enables sustainable delivery of high quality results, with x5 costs reduction and up to 45% increase in conversation (engagement) capacity.

 

Interested in reading more? Check out our other blogs:

WHY ALL CONVERSATIONAL AI SOLUTIONS ARE CURRENTLY CUSTOM MADE

                                                                                                                                         

All quality conversational AI solutions such as chatbots, voice bots, virtual assistants are customized. The reason is because conversational AI solutions have a component called AI training that has to be individually tailored to the needs of each business. Currently AI industry does not have a suitable solution to automate this component.


There are, of course, easy-to-use, scalable products such as Chatfuel, ManyChat and others, but they do not provide sufficient quality and therefore do not add value to the professional sales or customer service process.


The next generation of conversational AI solutions will be scalable, while capable of delivering the level of quality required by businesses and professional organizations. nmodes is among a limited number of AI companies, with sufficient level of technological knowledge and deep enough understanding of underlying linguistic processes. working on delivering this kind of solution to the market as quickly as possible. In the meantime, customizable AI solutions, with personalized AI training component, is industry's best option.  

 
READ MORE

What Is AI Engine and Do I Need It?

Chatbots and assistant programs designed to support conversations with human users rely on natural language processing (NLP). This is a field of scientific research that aims at making computers understand the meaning of sentences in natural language. The algorithms developed by NLP researchers helped power first generation of virtual assistants such as Siri or Cortana. Now the same algorithms are made available to the developer community to help companies build their own specialized virtual assistants. Industry products that offer NLP capabilities based on these algorithms are often called AI engines.

The most powerful and advanced AI engines currently available on the market are (in no particular order): IBM Watson, Google DialogFlow, Microsoft LUIS, Amazon Lex.

All these engines use intents and entities as primary pnguistic identifies to convey the meaning of incoming sentences. All of them offer conversation flow capability. In other words, intents and entities help to understand what the incoming sentence is about. Once the incoming sentence is correctly identified you can use the engine to provide a reply. You can repeat these two steps a large number of times, thus creating a conversation, or dialog.

In terms of language processing ability and simplicity of user experience IBM Watson and Google DialogFlow are currently above the pack. Microsoft LUIS is okay too; still, keeping in mind that Microsoft are aggressively territorial and like when users stay within their ecosystem, it is most efficient to use LUIS together with other Microsoft products such as MS Bot Framework.

Using AI engine conversation flow to create dialogs makes building conversations a simple, almost intuitive, task, with no coding involved. On the flip side, using AI engine conversation flow limits your natural tendency to make conversations natural. The alternative, delegating the conversation flow to the business layer of your chatbot, adds richness and flexibility to your dialog but makes the process more comppcated as it now requires coding. Cannot sell a cow and drink the milk at the same time, can you?

Amazon Lex lacks the semantic sophistication of their competitors. One can say (somewhat metaphorically)  that IBM Watson was created by linguists and computer scientists while Amazon Lex was created by sales people. As a product it is well packaged and initially looks pleasing on the eye, but once you start digging deeper you notice the limitations. Also, Amazon traditionally excelled in voice recognition component (Amazon Alexa) and not necessarily in actual language processing.

The space of conversational AI is fluid and changes happen rapidly. The existing products are evolving continuously and a new generation of AI engines is in the process of being developed.

READ MORE