Nov

Send Us Your Travel/Hospitality Business Pitch

                                                           

nmodes is a data analytics company. We analyse data based on consumer intent. We’re pretty good at it.

We spend a significant portion of our processing resources on analysing travel data. And so we are fast to know when somebody is planning a trip, or looking for a place to stay, or visiting your city and searching for activities, restaurants, entertainment.

In addition to data processing we help businesses in monetizing the data we deliver them. We create and implement the marketing strategy to convert intent-driven consumer data into your sales. Typically the majority of the data comes from social web, and consequently a successful marketing strategy has an important benefit of establishing long-term social presence for your business.

We also offer free end user services. Knowing consumer intent gives us capability to identify in real-time social users in need of travel help. Our data is actionable, allowing to respond momentarily to individuals with timely recommendations and advice.

Knowing consumer intent in real-time gives business power to control the sales process. Your customer satisfaction will improve, and your sales will grow significantly.

And if you are not ready to start using our full service, you can always send us a short description of your business, its value, and how it is better from competition. We will be happy to connect consumers with your product when appropriate. No commitment on your part is required.

Intent-driven data offers instant value, start enjoying it.

Interested in reading more? Check out our other blogs:

When Big Data is not so big anymore

                                                   

We are inundated with information. There is so much information around us they coined a special term - Big Data. To emphasize the sheer size of it.

It is, of course, a problem - to deal with a large amount of data. Various solutions have been created to address it efficiently.  

At nmodes we developed a semantic technology that accurately filters relevant conversations. We applied it to social networks, particularly Twitter. Twitter is a poster child of Big Data. They have 500 million conversations every day. A staggering number. And yet, we found that for many topics, when they are narrowed down and accurately filtered, there are not that many relevant conversations after all.

No more than 5 people are looking for CRM solutions on an average day on Twitter. Even less - two per day on average - are asking for new web hosting providers explicitly, although many more are complaining about their existing providers (which might or might not suggest they are ready to switch or looking for a new option).  

We often have businesses coming to us asking to find relevant conversations and expecting a large number of results. This is what Big Data is supposed to deliver, they assume. Such expectation is likely a product of our ‘keyword search dependency’. Indeed, when we run a keyword search on Twitter, or search engines, or anywhere we get a long list of results. The fact that most of them (up to 98% in many cases) are irrelevant is often lost in the visual illusion of having this long, seemingly endless, list in front of our eyes.

With the quality solutions that accurately deliver only relevant results we experience, for the first time, a situation when there are no longer big lists of random results. Only several relevant ones.  

This is so much more efficient. It saves time, increases productivity, clarifies the picture, and makes Big Data manageable.  

Time for businesses to embrace the new approach.

 

READ MORE

Beware the lure of crowdsourced data

Crowdsourced data can often be inconsistent, messy or downright wrong 

We all like something for nothing, that’s why open source software is so popular. (It’s also why the Pirate  Bay exists). But sometimes things that seem too good to be true are just that. 

Repustate is in the text analytics game which means we needs lots and lots of data to model certain  characteristics of written text. We need common words, grammar constructs, human-annotated corpora  of text etc. to make our various language models work as quickly and as well as they do. 

We recently embarked on the next phase of our text analytics adventure: semantic analysis. Semantic  analysis the process of taking arbitrary text and assigning meaning to the individual, relevant components.  For example, being able to identify “apple” as a fruit in the sentence “I went apple picking yesterday” but to  identify “Apple’ the company when saying “I can’t wait for the new Apple product announcement” (note:  even though I used title case for the latter example, casing should not matter)

READ MORE