Jun

Abundance of Information Often is a Liability

A massive change has occurred in the world during the last ten to twenty years. Until recently and throughout the history of mankind information was hard to access. Obtaining and sharing information was either a laborious process or impossible, and the underlying assumption was that information can never be enough.

Today, of course, we have the opposite picture. Not only information is easily available, it keeps pouring in from a growing number of sources, and we continuously find ourselves in situations when there is more information than we want or able to process.

A major task we, as species, are facing is therefore how to reduce or filter out relevant information. It is, to repeat, in direct opposition to the task we’ve been accustomed to during all previous centuries, which was how to obtain information.

Since this change took place only recently, within a lifetime of one generation, we didn’t have time to develop efficient set of procedures to address the new problem. But the work has started and will only accelerate with time.

Interested in reading more? Check out our other blogs:

The End of Digital Monitoring Paradigm

                                 

Digital industry is changing rapidly.

For the last decade analysis of social chatter and capture of consumer sentiment was considered the cutting edge of the marketing strategy.  In these early days of the new era of digital information businesses were told to listen to what market is saying about them. They were educated on the importance of media monitoring and the advantages it creates for strategic growth.

This picture has become outdated.

Listening to Big Data, in all its aspects and forms, is no longer enough. After you successfully listened and understood what customer said the next natural step would be to act, or respond. And so the digital domain is now spreading to include responses, with a host of innovative technological solutions reshaping the field rapidly.  Advances in artificial intelligence in particular create disruptive scalable opportunities in the space traditionally known for its slow manual progression.

Facebook was among the firstto enter the market, introducing bots into the process of connecting users with brands. Then there was Microsoft's turn.

Following these developments bots became the hottest trend in Silicon Valley in 2016.

nmodes fits seamlessly into this new world order. We deliver AI solutions that power business sales process. Our listening solution accurately monitors and captures real-time needs and interests of individual customers within the defined audience. And our Intelligent Assistant solution brings scalability to responses without compromising on quality.  

 

READ MORE

nmodes Technology - Overview

                                                       

nmodes ability to accurately deliver relevant messages and conversations to businesses is based on its ability to understand these messages and conversations. Once a system understands a sentence or text, it can easily perform a necessary action, i.e. bring a sentence about buying a car to the car dealership, or a complaint about purchased furniture to the customer service department of the furniture company.

Understanding sentences is called semantics. nmodes has developed a strong semantic technology that stand out in a number of ways.

Here is how nmodes technology is different:

1. Low computational power. We don’t use methods and algorithms deployed by almost everyone else in this space. The algorithms we are using allow us to achieve high level of accuracy while significantly reducing the computational power. Most accurate semantic systems, e.g. Google’s, or IBM’s, rely on supercomputers. By comparison our computational requirements are modest to the extreme, yet we successfully compete with these powerhouses in terms accuracy and quality of results.

2. Private data sources. We work extensively with Twitter and other social networks, yet at the same time we process enterprise data.  Working with private data sources means system should know details specific only to this particular data source. For example, when if a system handles web self-service solution for online electronics store it learns the names, prices, and other details of all products available at this store.  

3. User driven solution. Our system learns from user’s input. Which makes it extremely flexible and as granular as needed. It supports both generic topics, for example car purchasing, and conversations concentrating on specific type of car, or a model.

READ MORE