Jan

MAKING AI MAINSTREAM



We are experiencing a strong demand for conversational AI solutions. It is coming from every corner of the B2C market. It is growing by the day.

Conversational AI is becoming increasingly popular among the consumer facing business community. It is easy to see why - AI offers sales and customer service scalability and therefore is critical for the long-term success of a business.

Conversational AI solutions such as chatbots, voice bots, and virtual assistants provide much needed speed and efficiency, in an age where the rapid advancement of technology makes them virtually the only sustainable customer service solution.

Bu there is a catch - AI is complicated. Mainstream businesses do not have in house AI expertise. And it is not part of their business model to develop such expertise.

Today’s market offer several good conversational AI solutions, such as IBM Watson or Google DialogFlow. However, getting a business value out of them requires the very AI expertise that mainstream companies do not possess.

So what can be done?

Any AI solution should follow these three steps in order for the mainstream business community to fully benefit from it:

  1. Conversational AI should come as a service,
  2. The service should be available in natural language,
  3. The service should be fully personalized.  
 In the next several posts we will explore how the AI industry, including nmodes, is moving towards achieving these goals.
Interested in reading more? Check out our other blogs:

Beware the lure of crowdsourced data

Crowdsourced data can often be inconsistent, messy or downright wrong 

We all like something for nothing, that’s why open source software is so popular. (It’s also why the Pirate  Bay exists). But sometimes things that seem too good to be true are just that. 

Repustate is in the text analytics game which means we needs lots and lots of data to model certain  characteristics of written text. We need common words, grammar constructs, human-annotated corpora  of text etc. to make our various language models work as quickly and as well as they do. 

We recently embarked on the next phase of our text analytics adventure: semantic analysis. Semantic  analysis the process of taking arbitrary text and assigning meaning to the individual, relevant components.  For example, being able to identify “apple” as a fruit in the sentence “I went apple picking yesterday” but to  identify “Apple’ the company when saying “I can’t wait for the new Apple product announcement” (note:  even though I used title case for the latter example, casing should not matter)

READ MORE

Social selling. Difference between Facebook and Twitter

                                                         

There are obviously some key differences between Facebook and Twitter that make them appealing to different people as well as businesses. If possible, businesses should try to leverage both networks in their marketing and sales efforts.

But marketing approaches for each network differ.  Consequently social selling approaches differ as well. Here are some major differences of the two networks that impact sales strategy:

- Twitter lets all the accounts commingle, Facebook makes a definite distinction between business and personal. This can be an issue because a business page cannot proactively connect with individuals with personal profiles. Individuals have to first like a business page and still the business can’t reach out to them directly unless they message first. This is not the case with Twitter, as anyone can follow pretty much anyone.

- Facebook preferred way to market products and promote online sales can be compared to a showroom. The prospects can see the product and purchase it through some other channel, however engagement (with prospects) is limited to friends and followers. Hence growing the number of friends and followers becomes a critical task on Facebook.  Twitter does not offer promotional capabilities but engagement activity is not limited to followers. The engagement on Twitter is therefore more straightforward and can lead to direct sales.

- Facebook user data is typically open to friends or followers. Twitter data is typically open to the entire world.

- Twitter is fast (minutes). Facebook is slower (hours and days).

- Twitter is more about building a brand identity. Facebook is more about business relationships.

To summarize, a direct timely engagement could be a good strategy on Twitter. In a typical scenario a user tweets that she needs a taxi or asks where to dine tonight. A taxi company or a relevant restaurant engages in a conversation and secures a customer. It is an efficient approach with immediate ROI.

On Facebook a good strategy is to grow and educate a community of followers. Facebook is excellent for promotional campaigns. This is a longer-term strategy with effects not visible until after several months.

 

READ MORE