Jan

MAKING AI MAINSTREAM



We are experiencing a strong demand for conversational AI solutions. It is coming from every corner of the B2C market. It is growing by the day.

Conversational AI is becoming increasingly popular among the consumer facing business community. It is easy to see why - AI offers sales and customer service scalability and therefore is critical for the long-term success of a business.

Conversational AI solutions such as chatbots, voice bots, and virtual assistants provide much needed speed and efficiency, in an age where the rapid advancement of technology makes them virtually the only sustainable customer service solution.

Bu there is a catch - AI is complicated. Mainstream businesses do not have in house AI expertise. And it is not part of their business model to develop such expertise.

Today’s market offer several good conversational AI solutions, such as IBM Watson or Google DialogFlow. However, getting a business value out of them requires the very AI expertise that mainstream companies do not possess.

So what can be done?

Any AI solution should follow these three steps in order for the mainstream business community to fully benefit from it:

  1. Conversational AI should come as a service,
  2. The service should be available in natural language,
  3. The service should be fully personalized.  
 In the next several posts we will explore how the AI industry, including nmodes, is moving towards achieving these goals.
Interested in reading more? Check out our other blogs:

3 Reasons Why Knowing Intent is Essential for Your Business

What is intent? It is the reason behind the sentences we say. Behind posts and messages, as they appear on social networks. For instance, the intent of the tweet ‘I am going to buy a new car soon, my old car is entirely broken’  is buying a new car. The intent of this one however ‘ Need to buy me a car, got things to do lol’ could be anything from killing time by posting randomly to impressing friends, but not buying a car.  

During the time when most customer activities online happened on search engines (e.g. Google) understanding of intent was predominantly the task of these search engines.  So when I type ‘typical menu of Chinese restaurant’ and the search engine displays the list of local Chinese restaurants clearly in this case it did not understand my intent.

Nowadays, when an ever growing part of the consumer related activities is happening on social networks the task of understanding the customer intent becomes responsibility of a business.

Here are three reasons why this task is essential:

1. Marketing is personalized. Email blasts are a thing from the past. Today to stay completive your business should be able to target individually. And that means knowing what each of your potential customers needs in real time. The best way to know this is to understand customer intent. The numerous analytical and measurement tools available today exist only because until recently we didn’t know how to capture customer intent properly.

2. Knowing intent allows efficient and timely service across your company’s departments: those interested in the product belong to marketing department, purchase intent goes to sales, unhappy customers go to customer service, and so on.

3. Knowing intent offers long-term sustainability to your business because it reduces the noise. Unlike the previous generations, when the problem was a lack of information, today’s problem is the abundance of information. Business can function efficiently and be sustainable only when a competent model of finding the right information is in place. Understanding of intent is the best model available

READ MORE

Beware the lure of crowdsourced data

Crowdsourced data can often be inconsistent, messy or downright wrong 

We all like something for nothing, that’s why open source software is so popular. (It’s also why the Pirate  Bay exists). But sometimes things that seem too good to be true are just that. 

Repustate is in the text analytics game which means we needs lots and lots of data to model certain  characteristics of written text. We need common words, grammar constructs, human-annotated corpora  of text etc. to make our various language models work as quickly and as well as they do. 

We recently embarked on the next phase of our text analytics adventure: semantic analysis. Semantic  analysis the process of taking arbitrary text and assigning meaning to the individual, relevant components.  For example, being able to identify “apple” as a fruit in the sentence “I went apple picking yesterday” but to  identify “Apple’ the company when saying “I can’t wait for the new Apple product announcement” (note:  even though I used title case for the latter example, casing should not matter)

READ MORE