Dec

Intent-driven Data Critical for Sales Growth

One of the most central causes of missed growth opportunities and overspending is a failure on the part of businesses to create strategies that are tailored to the intent of the consumer. Recognizing and harnessing visitor intent brings increased engagement with relevant messages and calls to action.

Once a business identifies purchase intenders it can create content that aligns with their needs and desires in order to increase the likelihood of conversion. Consequently it can pick up on pre-sale signals from visitors in the research phase and drive lead-nurturing initiatives accordingly. The ability to identify this spectrum of visitor intent is key to creating relevant engagement campaigns that drive sales.

nmodes has been at the forefront of delivering consumer intent to businesses.

We sort the intents based on conversation topics, called ‘streams’.

Here is a stream of people looking for a hotel:

A stream of people who are getting married:

A stream of people thinking of going on a cruise:

Interested in reading more? Check out our other blogs:

AI unmasked: How a chatbot is different from a voice bot




The main difference is in the linguistic complexity. 

People express themselves differently when they speak compared to when they type. When we speak we use more sentences and we make our sentences longer. 

As a result a voice bot needs to have better AI compared to a chatbot, in order to handle a conversation and deliver the same customer experience. 


If your business model allows it, is better to start with a chatbot and add a voice bot on top of it.

This way you can gradually increase the complexity of your AI without compromising on your customer experience. 

 
READ MORE

Beware the lure of crowdsourced data

Crowdsourced data can often be inconsistent, messy or downright wrong 

We all like something for nothing, that’s why open source software is so popular. (It’s also why the Pirate  Bay exists). But sometimes things that seem too good to be true are just that. 

Repustate is in the text analytics game which means we needs lots and lots of data to model certain  characteristics of written text. We need common words, grammar constructs, human-annotated corpora  of text etc. to make our various language models work as quickly and as well as they do. 

We recently embarked on the next phase of our text analytics adventure: semantic analysis. Semantic  analysis the process of taking arbitrary text and assigning meaning to the individual, relevant components.  For example, being able to identify “apple” as a fruit in the sentence “I went apple picking yesterday” but to  identify “Apple’ the company when saying “I can’t wait for the new Apple product announcement” (note:  even though I used title case for the latter example, casing should not matter)

READ MORE