Chatbots and assistant programs designed to support conversations with human users rely on natural language processing (NLP). This is a field of scientific research that aims at making computers understand the meaning of sentences in natural language. The algorithms developed by NLP researchers helped power first generation of virtual assistants such as Siri or Cortana. Now the same algorithms are made available to the developer community to help companies build their own specialized virtual assistants. Industry products that offer NLP capabilities based on these algorithms are often called AI engines.
The most powerful and advanced AI engines currently available on the market are (in no particular order): IBM Watson, Google DialogFlow, Microsoft LUIS, Amazon Lex.
All these engines use intents and entities as primary pnguistic identifies to convey the meaning of incoming sentences. All of them offer conversation flow capability. In other words, intents and entities help to understand what the incoming sentence is about. Once the incoming sentence is correctly identified you can use the engine to provide a reply. You can repeat these two steps a large number of times, thus creating a conversation, or dialog.
In terms of language processing ability and simplicity of user experience IBM Watson and Google DialogFlow are currently above the pack. Microsoft LUIS is okay too; still, keeping in mind that Microsoft are aggressively territorial and like when users stay within their ecosystem, it is most efficient to use LUIS together with other Microsoft products such as MS Bot Framework.
Using AI engine conversation flow to create dialogs makes building conversations a simple, almost intuitive, task, with no coding involved. On the flip side, using AI engine conversation flow limits your natural tendency to make conversations natural. The alternative, delegating the conversation flow to the business layer of your chatbot, adds richness and flexibility to your dialog but makes the process more comppcated as it now requires coding. Cannot sell a cow and drink the milk at the same time, can you?
Amazon Lex lacks the semantic sophistication of their competitors. One can say (somewhat metaphorically) that IBM Watson was created by linguists and computer scientists while Amazon Lex was created by sales people. As a product it is well packaged and initially looks pleasing on the eye, but once you start digging deeper you notice the limitations. Also, Amazon traditionally excelled in voice recognition component (Amazon Alexa) and not necessarily in actual language processing.
The space of conversational AI is fluid and changes happen rapidly. The existing products are evolving continuously and a new generation of AI engines is in the process of being developed.

What Is AI Engine and Do I Need It?

Social Marketing is Simple
In its very essence social marketing is based on one simple foundation - give first, take later.
This concept of giving to the community is hardly possible to overestimate. It defines the way social networks operate and goes even deeper, to the basic principles of social interactions among humans.
In fact it is a much healthier foundation for business than traditional one, based on advertising.
Yet it runs contrary to what many entrepreneurs and business people perceive as a proper marketing approach.
Traditional marketing, such as billboards, radio ads, posters, banners, emails blasts, etc is based on two principles, a) the statistical law of big numbers, aiming to reach out to as large audience as possible while knowing that only a small percent would become interested, b) message of self-promotion and self-advertisment.
Social marketing negates both of these principles.
Social marketing is personal, it operates individually, and in a personalised way. Which makes perfect sense from a common perspective. Would you rather be bombarded by the generic ads that in most cases have nothing to do with your interests and desires, or approached on a one-on-one basis with a chance to discuss your specific needs?
Social marketing is directed towards promoting the interests of others, not yours (or your business). Again it makes sense as we are a social species, we live in societies and rely on communication. The most successful communication strategy is the one that takes care of the needs of your communication partner.
And so, opposing the traditional marketing approach, social marketing is based on the idea of giving to the community. Which makes it more efficient than traditional marketing, if measured against the effort applied. In other words, taken 100 random prospects, we are more likely to convert them into customers if using social marketing than traditional marketing.
But is it scalable?
(to be continued)
WHY ALL CONVERSATIONAL AI SOLUTIONS ARE CURRENTLY CUSTOM MADE
All quality conversational AI solutions such as chatbots, voice bots, virtual assistants are customized. The reason is because conversational AI solutions have a component called AI training that has to be individually tailored to the needs of each business. Currently AI industry does not have a suitable solution to automate this component.
There are, of course, easy-to-use, scalable products such as Chatfuel, ManyChat and others, but they do not provide sufficient quality and therefore do not add value to the professional sales or customer service process.
The next generation of conversational AI solutions will be scalable, while capable of delivering the level of quality required by businesses and professional organizations. nmodes is among a limited number of AI companies, with sufficient level of technological knowledge and deep enough understanding of underlying linguistic processes. working on delivering this kind of solution to the market as quickly as possible. In the meantime, customizable AI solutions, with personalized AI training component, is industry's best option.