Aug

Meet Eliza, the Mother of AI

                                                             

Meet Eliza, the Mother of AI..

Today, Artificial Intelligence seems to be the buzz of every major enterprise. Salesforce is formally announcing Einstein this fall, IBM has worked on Watson for years now, and after 20 years of working with AI, Microsoft has made a few attempts to bring the technology to the market. With all this activity, you may be asking yourself what kind of impact AI will have on you and your business, and where you might want to look to investigate the possibilities Artificial Intelligence represents.

Before we discuss how AI will impact customer support and consumer experience, and how you may leverage it in your contact center, I thought it would be fun to take a look where AI got its start.

The term AI was coined by computer scientist John McCarthyin 1956 who subsequently went on to create the Dartmouth Conference to advance the ideas and technologies associated with machine intelligence. While this collective of thought leaders and scientists made huge advancements through programs at MIT and others, most of their work was only circulated in academic fields.

Not many people were aware of Artificial Intelligence, how it worked or its potential uses, until around 1964 when MIT computer Scientist Joseph Weizenbaumwrote Eliza, a program based on Natural Language Processingthat was able to successfully question and respond to human interactions in such a way as to almost sound like a real human being. Eliza, with almost no information about human responses was able to use scripts and pattern  matching to simulate responses that might occur between two people.

The most famous of these simulations, highlighting  AI ability to intersect with modern needs and technology, was DOCTOR. DOCTOR was able to question and respond to a human in such a way so as to almost sound like an actual psychotherapist. As the human subject made statements, DOCTOR asked questions and made statements relevant to the conversation as if it were a present and conscious being… almost.

Over the years  computer scientists, whether academics or industry professionals,  have worked tirelessly to improve upon these developments with the hope of delivering a computer program capable not only to ask and respond, but to understand the context of a conversation. A program that can relate relevant data to responses, thus providing value to the human it’s conversing with, while helping to chart the course of the conversation, just as if you and I were talking over a cup of coffee or across a conference room table.

Why is this important, you may ask? With the introduction of Chatbots, we began to see some of the potential in Artificial Intelligence. Companies could now front-end customer chat interactions that allowed the company to be more responsive to its customers while shortening wait times and deflecting inquiries from the call center, which as we all know are hugely expensive.

The one problem with Chatbots? Customers hated dealing with limited technology that was cold, often incorrect, and frustrating. People are accustomed to dealing with the cold, sterile nature of technology when they type numbers in a phone to be routed but expected a human to be chatting with them. These negative experiences have made a number of companies a little gun shy about implementing true Artificial Intelligence. The last thing a business wants is a customer complaining, especially on Social Media, about a poor customer experience due to a bad interaction with technology.

There is a significant difference between Chatbot technology and true AI, consequently the outcomes and customer experience are proving to be very different. Where a Chatbot is more like an IVR, answering simple questions and routing customers to the correct agent, Artificial Intelligence is aware of the conversation and able to present relevant responses, thereby providing a faster response and shorter customer interaction times and better customer service. I mean, if Eliza’s DOCTOR could simulate a psychotherapist in 1964, what can AI do for your contact center in 2016?

Interested in reading more? Check out our other blogs:

What Is AI Engine and Do I Need It?

Chatbots and assistant programs designed to support conversations with human users rely on natural language processing (NLP). This is a field of scientific research that aims at making computers understand the meaning of sentences in natural language. The algorithms developed by NLP researchers helped power first generation of virtual assistants such as Siri or Cortana. Now the same algorithms are made available to the developer community to help companies build their own specialized virtual assistants. Industry products that offer NLP capabilities based on these algorithms are often called AI engines.

The most powerful and advanced AI engines currently available on the market are (in no particular order): IBM Watson, Google DialogFlow, Microsoft LUIS, Amazon Lex.

All these engines use intents and entities as primary pnguistic identifies to convey the meaning of incoming sentences. All of them offer conversation flow capability. In other words, intents and entities help to understand what the incoming sentence is about. Once the incoming sentence is correctly identified you can use the engine to provide a reply. You can repeat these two steps a large number of times, thus creating a conversation, or dialog.

In terms of language processing ability and simplicity of user experience IBM Watson and Google DialogFlow are currently above the pack. Microsoft LUIS is okay too; still, keeping in mind that Microsoft are aggressively territorial and like when users stay within their ecosystem, it is most efficient to use LUIS together with other Microsoft products such as MS Bot Framework.

Using AI engine conversation flow to create dialogs makes building conversations a simple, almost intuitive, task, with no coding involved. On the flip side, using AI engine conversation flow limits your natural tendency to make conversations natural. The alternative, delegating the conversation flow to the business layer of your chatbot, adds richness and flexibility to your dialog but makes the process more comppcated as it now requires coding. Cannot sell a cow and drink the milk at the same time, can you?

Amazon Lex lacks the semantic sophistication of their competitors. One can say (somewhat metaphorically)  that IBM Watson was created by linguists and computer scientists while Amazon Lex was created by sales people. As a product it is well packaged and initially looks pleasing on the eye, but once you start digging deeper you notice the limitations. Also, Amazon traditionally excelled in voice recognition component (Amazon Alexa) and not necessarily in actual language processing.

The space of conversational AI is fluid and changes happen rapidly. The existing products are evolving continuously and a new generation of AI engines is in the process of being developed.

READ MORE

Artificial Intelligence Chat Is Evolving Faster Than IVR

                                                         

Although it doesn’t feel like all that long ago, way back in the 90s one of the most important factors to a call center’s success was the ability to route a customer to the right support agent with the IVR (Interactive Voice Response). Countless hours were spent identifying the most efficient call routing patterns and expert agent capabilities to ensure that your request reached the right person quickly. This technology is still widely used today and there are still teams in the largest companies programming IVR systems to accomplish pretty much the same goal.

As the standard for customer support evolved there have been many attempts to improve the function and the customer experience associated with IVRs to reduce hold times and provide more relevant support faster. Even today some companies will use their IVR system as a way to keep a customer on hold, rather than provide a solution, when agents are inundated with calls.

For those of us who’ve worked in the voice industry for some time, we’ve seen first-hand the attempts to accomplish a customer’s need before reaching an agent. First there was expert agent routing that delivered your call to the agent most qualified to help you. Then came advances in voice recognition, which today has evolved to be a very effective tool to increase containment rates and deflect calls from reaching a live agent. My two favorite examples of the power of voice recognition are Cox Communications and Capital One, two examples of great voice recognition and routing.

Our memory, however, is short. It wasn’t so long ago that we were all pulling our hair out punching digits into the phone or constantly repeating “agent”, “Agent”, “AGENT”, AGENT!!!!!”.

Whether it was a limit of computational power or the sheer cost of developing and implementing advanced call center technology, it took decades for phone systems to be able to front end the customer support process as efficiently as they do today. Thankfully we all survived to see it without boiling over from the hypertension usually associated with calling with a customer service department.

Bad customer experience is definitely not the case with Chat Artificial Intelligence (Chat AI). While we seem to hear about the shortcomings of Chat AI like the disconnected conversations and the robotic like responses, these experiences are usually the product of Chatbots with limited AI functionality or early stage deployments. The increases in both computational power and the massive advancements in machine learning are driving excellent customer experiences that improve over time.

When was the last time you heard of technology actually performing better, on its own, without a ton of additional development work or continuous updates? Well, that’s the case with Artificial Intelligence. Like a person, the more experience it has interacting with customers and information, the better it performs with little need to be manually improved or fine-tuned.

Today, AI Chat can be used to answer a large majority of customer requests and because Artificial Intelligence learns as it is used, customers prefer to interact through AI chat to avoid all of the frustrations commonly associated with calling a contact center agent. 

READ MORE