Oct

When Big Data is not so big anymore

                                                   

We are inundated with information. There is so much information around us they coined a special term - Big Data. To emphasize the sheer size of it.

It is, of course, a problem - to deal with a large amount of data. Various solutions have been created to address it efficiently.  

At nmodes we developed a semantic technology that accurately filters relevant conversations. We applied it to social networks, particularly Twitter. Twitter is a poster child of Big Data. They have 500 million conversations every day. A staggering number. And yet, we found that for many topics, when they are narrowed down and accurately filtered, there are not that many relevant conversations after all.

No more than 5 people are looking for CRM solutions on an average day on Twitter. Even less - two per day on average - are asking for new web hosting providers explicitly, although many more are complaining about their existing providers (which might or might not suggest they are ready to switch or looking for a new option).  

We often have businesses coming to us asking to find relevant conversations and expecting a large number of results. This is what Big Data is supposed to deliver, they assume. Such expectation is likely a product of our ‘keyword search dependency’. Indeed, when we run a keyword search on Twitter, or search engines, or anywhere we get a long list of results. The fact that most of them (up to 98% in many cases) are irrelevant is often lost in the visual illusion of having this long, seemingly endless, list in front of our eyes.

With the quality solutions that accurately deliver only relevant results we experience, for the first time, a situation when there are no longer big lists of random results. Only several relevant ones.  

This is so much more efficient. It saves time, increases productivity, clarifies the picture, and makes Big Data manageable.  

Time for businesses to embrace the new approach.

 

Interested in reading more? Check out our other blogs:

nmodes Is Helping Businesses to Succeed

                                                           

With the launch of the new dashboard nmodes is helping businesses to drive traffic and grow sales.

For example, One of our clients needed to increase traffic to their website while at the same time improve the conversion rate. In other words, they wanted to see more quality traffic.

The client made a concentrated effort on social media, however they were having difficulties in finding the target audience - traditional keywords search resulted in too much noise and did not produce desired outcome.

nmodes dashboard simplified this client’s engagement process. We created a dedicated stream that accurately addressed their targeted audience.  nmodes dashboard is actionable, so their engagement became easy. nmodes technology identifies potential customers accurately, and so their engagement became efficient.

As a result, the click thru rate rose up to 65%, traffic quality improved by 25%, and conversion increased to 6-8%

Another client relied heavily on mainstream dashboards (such as Hootsuite) These tools do not do a good job finding relevant conversations, in the process producing too much noise and forcing client’s community managers to spend long hours manually identifying these relevant conversations. The client manages multiple social account and this type of manual labour was impeding the business, both in terms of costs and efficiency.

nmodes produces highly accurate results in finding relevant conversations that do not require manual clean up. The client started using nmodes solution, and immediately freed a substantial amount of hours which enabled them to consecrate on servicing their customers and acquiring new ones.

 

READ MORE

nmodes Technology - Overview

                                                       

nmodes ability to accurately deliver relevant messages and conversations to businesses is based on its ability to understand these messages and conversations. Once a system understands a sentence or text, it can easily perform a necessary action, i.e. bring a sentence about buying a car to the car dealership, or a complaint about purchased furniture to the customer service department of the furniture company.

Understanding sentences is called semantics. nmodes has developed a strong semantic technology that stand out in a number of ways.

Here is how nmodes technology is different:

1. Low computational power. We don’t use methods and algorithms deployed by almost everyone else in this space. The algorithms we are using allow us to achieve high level of accuracy while significantly reducing the computational power. Most accurate semantic systems, e.g. Google’s, or IBM’s, rely on supercomputers. By comparison our computational requirements are modest to the extreme, yet we successfully compete with these powerhouses in terms accuracy and quality of results.

2. Private data sources. We work extensively with Twitter and other social networks, yet at the same time we process enterprise data.  Working with private data sources means system should know details specific only to this particular data source. For example, when if a system handles web self-service solution for online electronics store it learns the names, prices, and other details of all products available at this store.  

3. User driven solution. Our system learns from user’s input. Which makes it extremely flexible and as granular as needed. It supports both generic topics, for example car purchasing, and conversations concentrating on specific type of car, or a model.

READ MORE