Jan

How AI is changing the work landscape

             
           "For better or worse, robots are going to replace many humans in their jobs,” says analysts from BBC, and the coronavirus is speeding up the process. Consumer preferences are evolving and recently consumer behavior demonstrates that we as a society have become more tolerant accepting of using automation in our daily routines. 

             In the professional workspace, most if not all companies have moved towards working from home. Given the unprecedented times, recruitment, the employees management, and the corporate governance processes and communication have moved online. As a result of pandemics many companies are experiencing hiring freezes, but many others have moved their recruitment efforts online. A few companies have begun piloting recruitment with the help of artificial intelligence. They are now leveraging AI to conduct online interviews and assessments and deliver data back to the employer. Now more than ever, companies are realizing the importance of moving towards a remote-friendly workforce. Being able to scale human capital on a larger scale online has definitely been accelerated recently. 



             I know for myself, as a current student who recently had their internship offers rescinded due to COVID-19, I’ve put myself back into the market. I’ve seen both small businesses and corporations utilize screening questions, video pitches, and unique riddles to test students’ critical thinking and how they fit into the company culture. This experience in itself has been revealing – after so many years of in-person interviews to suddenly having to emulate the same energy online or via video. Given the adjustment, at times it definitely felt unnatural to sit in front of my computer camera and pitch myself or answer video questions. However, going forward, I can see how automation and online platforms will become more explored given the time it saves and the bias it could remove during the recruitment process. 


            Yet it is not just a change in the recruitment process that we are seeing. The customer service environment, as I have seen first-hand, is under large stress. One of the first calls I had made was to an online retailer, to try and put in a return order. What seemed to be an idea that everyone else had as well, I was put into a queue that lasted more than 30 minutes. After hitting that 30-minute mark, I gave up and put off the task for a later date. Now, a month later, more and more companies are adopting chatbots and artificial intelligence into their customer service processes. These companies are beginning to provide information in a more efficient manner, and with less human capital.

            Moving forward, in the next few months and post-COVID-19, it would be interesting to see which companies are focusing more on their digital transformation efforts. I believe that a larger number of universities and educational institutions will partner with tech companies to help digitize their working environments. And private businesses will continue to implement some of the already existing practices and produce products that cater to the remote working lifestyle and online interactions.

Interested in reading more? Check out our other blogs:

nmodes Technology - Overview

                                                       

nmodes ability to accurately deliver relevant messages and conversations to businesses is based on its ability to understand these messages and conversations. Once a system understands a sentence or text, it can easily perform a necessary action, i.e. bring a sentence about buying a car to the car dealership, or a complaint about purchased furniture to the customer service department of the furniture company.

Understanding sentences is called semantics. nmodes has developed a strong semantic technology that stand out in a number of ways.

Here is how nmodes technology is different:

1. Low computational power. We don’t use methods and algorithms deployed by almost everyone else in this space. The algorithms we are using allow us to achieve high level of accuracy while significantly reducing the computational power. Most accurate semantic systems, e.g. Google’s, or IBM’s, rely on supercomputers. By comparison our computational requirements are modest to the extreme, yet we successfully compete with these powerhouses in terms accuracy and quality of results.

2. Private data sources. We work extensively with Twitter and other social networks, yet at the same time we process enterprise data.  Working with private data sources means system should know details specific only to this particular data source. For example, when if a system handles web self-service solution for online electronics store it learns the names, prices, and other details of all products available at this store.  

3. User driven solution. Our system learns from user’s input. Which makes it extremely flexible and as granular as needed. It supports both generic topics, for example car purchasing, and conversations concentrating on specific type of car, or a model.

READ MORE

Easy Yet Untapped Revenue Channel for Hotels Worldwide

There are many travelers looking for hotels and places to stay on social web. Every day.

Take Twitter, for example:

 

Or this:



People are genuinely looking for help. Surprisingly though only few are getting it. According to nmodes data less than 12% of Twitter travel  requests are being answered. The rest - lost opportunities for hotels and businesses in the hospitality industry.  

 And how big is this opportunity anyway?

nmodes Twitter data shows that every 15 min somebody expresses intent of going to, or visiting New York. Most of these travelers need a place to stay there.

Every 33 min - intent of traveling to London.

Every 54 min - intent of traveling to Paris.

We started Twitter recommendation service @nmodesHelps and were encouranged by the results. 72% of those that received our travel recommendations reacted by thanking us and expressing their gratitude. This reinforced our assumption that people seek travel advice on Twitter, accept it as an instant value, and are prepared to act upon it.

The hotels that are ready to move fast to monetize this opportunity will benefit the most.

 

READ MORE