Apr

CHATBOT PLATFORMS. How to choose the right one?

   
Chatbot platforms are essential tools if you need to build and run a chatbot.
There are many available on the market, big and small, popular and not so much.

Here are some useful thoughts that should help you navigate the complex world of chatbots and conversational AI solutions.

All chatbot platforms can be split into two categories: those that let you create chatbots without any programming, and those that require programming. Now, the idea that you don’t need to possess technical knowledge to build a chatbot seems appealing but the reality is not so rosy. In fact, I have yet to see a professional chatbot created without coding.
Chatbots rely on sophisticated algorithms and advanced knowledge of linguistics. These technologies are so complex that at the moment there are no plug-and-play solutions available. The companies like Chatfuel, Manychat, Flow XO and many others are attempting to fill that void and offer chatbot platforms that are simple in use. The best way to make the chatbot creation simpler is by dropping the need to code them. However this simplicity comes at a price: chatbots made without coding are limited, rigid and in general, primitive.
So to summarize: if you want to impress your girlfriend use Chatfuel. If you need a professional chatbot that delivers on your business goals and provides customer satisfaction use advanced chatbot platforms with programming capabilities.

One of the main, if not the main, tasks of the chatbot platforms is to connect your chatbot to the user interfaces. There are many ways for your chatbot to interface with the world: on Facebook messenger, on the website, on the mobile app, via SMS, on Twitter , on Skype, on Slack, on Telegram, and more. A good chatbot platform should seamlessly connect the chatbot to most of these channels. Chatbot platforms do not make your chatbot smarter. For this you need AI Engines (brief disucssion on AI Engines: http://nmodes.com/entry/2018/03/29/what-are-ai-engines-and-how-choose-one/).

For best results create your chatbot on a chatbot platform, then connect it to AI engine.

One of the top chatbot platforms on the market is Microsoft Bot Framework. It is robust, powerful, with a wide variety of useful functionality built-in. Another good chatbot platform is DialogFlow. DialogFlow has a slightly different architecture in the sense that it is a chatbot platform and an AI Engine all in one interface.

Chatbot platforms can be used to create conversation flow for your chatbot. There are several schools of thought here: some prefer to delegate conversation flow to AI engines. Chatfuel and other tools with the emphasis on simplicity (build your chatbot in minutes, no coding necessary) offer easy graphical interfaces for conversation flow creation. And there is always a reliable option to create conversation flow in an old-fashioned way, programmatically.

Which option to choose? Depends on your chatbot requirements and the business needs the chatbot is expected to address.And if you have questions feel free to ask: http://http://nmodes.com/contact-us/

Interested in reading more? Check out our other blogs:

AI unmasked: Have chatbots failed?

It is becoming increasingly popular to say that chatbots have failed and are overhyped.

While it is true that in many cases expectations from chatbots significantly exceed the results on the ground, the anticipation of chatbots’ demise are somewhat premature. 

One of the main problems for chatbots is that the market is inundated with low quality solution providers who deliver low quality results. This happened because conversational AI seems to have low entry barriers. Unlike other recent technological darlings such as space technology or renewable energy, conversational AI is purely software and therefore does not require vast sums of initial investment. 

What this approach is missing however,  is that conversational AI, in addition to being a software, also requires an accurate understanding of how language works. And there is a limited number of people in the world that do have such understanding.

When conversational AI is delivered by AI experts who understand the way human language works, the results are good and convincing, just as how you would expect them to be.

Suffering from unsatisfactory product quality is a common problem for many new and emerging industries.  The rules of the market dictate that most of the low quality players will eventually disappear. Poorly created chatbots will therefore not be around for too long.

READ MORE

Why Keywords Do Not Cut It on Social Search

Most of the online search is keywords-based. Same in social domain, a vast number of analytical tools, networking platforms and mobile apps use keyword-based technologies as well.

There is a difference, of course, between traditional internet search and social search. The former finds websites. The latter finds conversations, messages, posts. Keyword-based internet search is doing a decent job for us for over 20 years. Keyword-based social search is not doing a decent job at all.

Consider a basic example: finding on Twitter who is interested in buying jeans. We can start by typing ‘jeans’ but that brings up too much noise. Maybe ‘need jeans’? Less noise but then we  people who use expressions like ‘looking for jeans’ or ‘want jeans’ or shopping for jeans’. Not to mention those who use ‘denim’, or brand names. So we have to run multiple searches or create a complex search string using logical AND and OR and hope it works. Neither option is simple, or convenient, and certainly not efficient.

The above example highlights the major flaw with keyword search - it does not capture the meaning of social conversations, and therefore cannot be a reliable source of information about conversations.

It does not provide too much of correct information. And it does provide lots of incorrect information. But the biggest problem is that it has extremely limited potential for improvement.  

So as long as we stick with keyword-based social search the results are destined to be limited.

Why, then, we stick with keyword-based search in social search? Simply because there is no good alternative. Until recently, that is.  

The advanced semantic technologies capable of capturing the meaning, or intent, of conversations are now offering an exciting alternative.

I will discuss these technologies on my next blog.

READ MORE