Dec

What Is Conversational AI

                                                         

Conversational Artificial Intelligence solutions can communicate with people in their natural languages. The interactions happen via speech or text – our most common forms of interaction.

The most popular example of a conversational AI solution is chatbot.

The chatbot popularity began in 2016 with Facebook’s announcement  of a developer-friendly platform to build chatbots on Facebook messenger. Soon, chatbots became the buzz of the technological community and spread across various industries. As a next step, toolkits that helped build a bot in five minutes grew popular, companies raced to the market with new bot announcements and the world woke up to a new chatbot-based reality.

A well developed conversational AI chatbot is able to interact on a near-human level. If we think about it, most companies’ customer service and sales centers deal with a core of 6-12 repeating issues. conversational AI software allows companies to develop an intelligent response channel that can cover the most common customer interactions.

Another advantage in using Conversational AI is in the marketing and branding domain. Chatbots allow the companies to stay on their message without veering off course . With AI, the scripts are all written and approved in house. Even when the AI system learns, when the appropriate training techniques are implemented, the system will adhere to the required profrssional verbiage.

 

Interested in reading more? Check out our other blogs:

When Big Data is not so big anymore

                                                   

We are inundated with information. There is so much information around us they coined a special term - Big Data. To emphasize the sheer size of it.

It is, of course, a problem - to deal with a large amount of data. Various solutions have been created to address it efficiently.  

At nmodes we developed a semantic technology that accurately filters relevant conversations. We applied it to social networks, particularly Twitter. Twitter is a poster child of Big Data. They have 500 million conversations every day. A staggering number. And yet, we found that for many topics, when they are narrowed down and accurately filtered, there are not that many relevant conversations after all.

No more than 5 people are looking for CRM solutions on an average day on Twitter. Even less - two per day on average - are asking for new web hosting providers explicitly, although many more are complaining about their existing providers (which might or might not suggest they are ready to switch or looking for a new option).  

We often have businesses coming to us asking to find relevant conversations and expecting a large number of results. This is what Big Data is supposed to deliver, they assume. Such expectation is likely a product of our ‘keyword search dependency’. Indeed, when we run a keyword search on Twitter, or search engines, or anywhere we get a long list of results. The fact that most of them (up to 98% in many cases) are irrelevant is often lost in the visual illusion of having this long, seemingly endless, list in front of our eyes.

With the quality solutions that accurately deliver only relevant results we experience, for the first time, a situation when there are no longer big lists of random results. Only several relevant ones.  

This is so much more efficient. It saves time, increases productivity, clarifies the picture, and makes Big Data manageable.  

Time for businesses to embrace the new approach.

 

READ MORE

Why Keywords Do Not Cut It on Social Search

Most of the online search is keywords-based. Same in social domain, a vast number of analytical tools, networking platforms and mobile apps use keyword-based technologies as well.

There is a difference, of course, between traditional internet search and social search. The former finds websites. The latter finds conversations, messages, posts. Keyword-based internet search is doing a decent job for us for over 20 years. Keyword-based social search is not doing a decent job at all.

Consider a basic example: finding on Twitter who is interested in buying jeans. We can start by typing ‘jeans’ but that brings up too much noise. Maybe ‘need jeans’? Less noise but then we  people who use expressions like ‘looking for jeans’ or ‘want jeans’ or shopping for jeans’. Not to mention those who use ‘denim’, or brand names. So we have to run multiple searches or create a complex search string using logical AND and OR and hope it works. Neither option is simple, or convenient, and certainly not efficient.

The above example highlights the major flaw with keyword search - it does not capture the meaning of social conversations, and therefore cannot be a reliable source of information about conversations.

It does not provide too much of correct information. And it does provide lots of incorrect information. But the biggest problem is that it has extremely limited potential for improvement.  

So as long as we stick with keyword-based social search the results are destined to be limited.

Why, then, we stick with keyword-based search in social search? Simply because there is no good alternative. Until recently, that is.  

The advanced semantic technologies capable of capturing the meaning, or intent, of conversations are now offering an exciting alternative.

I will discuss these technologies on my next blog.

READ MORE