Oct

Building 24x7x365 Customer Support and Online Sales... FOR FREE (Almost)

                                                             

We’ve all seen the numbers and they tell us that customers are more likely to make a purchase if they’re able to speak to a representative at the time of purchase. Study after study shows that if you can prevent even the smallest percentage of customer defection revenues and profitability can literally skyrocket as much as 80%. Just as important, the faster is your service the better is customer experience.

The same can be said for customer support. More than 70% of customers say that responsive customer support providing fast, courteous, relevant and contextual answers to their inquiries are the most important factors in determining the quality of customer service and the likelihood of that customer doing business with the company in the future.

As our world becomes even more “on-demand” and global, providing around the clock sales and customer support is quickly becoming a key differentiator. Customer’s desire to do business with companies on their own schedule and terms are driving financial growth and customer loyalty across all sectors and industries. Companies that neglect this “always on” requirement not only lose out, but need to find ways to be competitive.

Unfortunately, only the largest companies have the financial resources to deliver 24x7 customer support and sales operations. Still many of the largest companies can’t justify the expense of building out and staffing a 24 hour contact center. While outsourcing to a BPO is always an option, statistics show a diminishing return for outsource customer and sales support operations.

As customers continue to drive up the use of chat and social communications for customer support and sales, along with the incredible growth in Artificial Intelligence technology, smart companies on the forefront of customer service now have the ability to offer around the clock service for a large portion of their customers.

Think about this: While the average phone support call has previously been measured at almost 6 minutes, the average chat session lasts just 42 seconds, indicating that the vast majority of customer support issues are simple and only require limited information in order to leave a customer informed and satisfied with the interaction.

Today Artificial Intelligence can deliver a personalized, informed, and contextually relevant response to just about any question related to most customer inquiries. Add on the fact that AI actually “learns” as it interacts with people and information and the value to the customer and the vendor actually increases over time.  Wouldn’t we all like to have immediate service with zero wait times and fast, courteous response that immediately addresses our needs? I know I would.

Implementing Artificial Intelligence for customer service comes down to an application cost that, when amortized over the number of chat or social sessions it can handle, reduces customer support costs to as little as 10% of traditional contact center and agent expenses.

The one objection to relying on Artificial Intelligence in the contact center is the customer experience. There’s enough bad press out there about Chatbots and broken, robotic responses that are sometimes irrelevant that some customer support professionals are wary of any form or automation. My response to that is, while those were valid concerns; just take a look at Siri today vs. 2 years ago. The quality of responses has dramatically improved, as has the customer perception and usefulness.

What are your thoughts about Artificial Intelligence in the contact center? We’d love to hear from you.

Interested in reading more? Check out our other blogs:

Towards smarter data - accuracy and precision

                                                   

There is a huge amount of information out there. And it is growing. To make it efficient and increase our competitive advantage we need to evolve and start using information in a smart way, by concentrating on data that drives business value because it is accurate, actionable, and agile. Accuracy is an important measure that determines the quality of data processing solutions.

How accuracy is calculated?

It is easy to do with structured data, because the requirements are formalizable. It is less obvious with unstructured data, e.g. a stream of social feeds, or any data set that involves natural language. Indeed, the sentences of natural language are subject to multiple interpretations, and therefore allow a degree of subjectivity. For example, should a sentence ‘I haven’t been on a sea cruise for a long time’ be qualified for a data set of people interested in going on a cruise? Both answers, yes and no, seem valid.

In these cases an argument was put forward endorsing a consensus approach which polls data providers is the best way to judge data accuracy. This approach essentially claims that attributes with the highest consensus across data providers is the most accurate.

At nmodes we deal with unstructured data all the time because we process natural language messages, primarily from social networks. We do not favor this simplistic approach, as it is considered biased, inviting people to make assumptions based on what they already believe to be true, and making no distinction between precision and accuracy. Obviously the difference is that precision measures what you got right, and accuracy measures both what you got right and what you got wrong. Accuracy is a more inclusive and therefore more valuable characteristic.

Our approach is

a) to validate data against third party independent sources (typically of academic origin) that contain trusted sets and reliable demography. Validating nmodes data against third party sources allows us to verify that our data achieves the greatest possible balance of scale and accuracy.

b) to enrich upon the existing test sets by purposefully including examples ambiguous in meaning and intent, and providing additional levels of categorization to cover these examples.

Accuracy is becoming important when businesses move from rudimentary data use, typical of the first Big Data years, to a more measured and careful approach of today. Understanding how it is calculated and the value it brings helps in achieving long-term sustainability and success.

 

READ MORE

NMODES at Collision 2019



While Toronto is charged with hosting the Collision - "North America's fastest-growing tech conference" this year, nmodes is excited to make its first appearance among designated start-ups who have been selected to demo their products to conference visitors, potential investors, tech-enthusiasts and business executives.

nmodes, a year and a half in the market, offers a conversational product that uses AI to provide its customers with a scalable solution to execute 24/7/365 marketing acquisition and customer experience programs. While nmodes has already garnered its global presence with 40+ clients, North American market continues to be most enterprising for AI Chatbots and Voicebots.   Collision Tech Event offers an exciting opportunity for nmodes team to take its networking game a notch higher and pitch it to businesses looking to catch-up with the AI space and be early adopters of hottest AI products available in the market.

How nmodes is different than other chatbots?

AI space is nothing new to the tech world as chatbots, virtual assistants and voice bots are finding their commercial contribution toward improving the customer experience of brands. nmodes continues to work closely with the businesses focusing on helping brands drive double digit growth in lead conversions and engagement rates.

Three key market differentiators for nmodes:

  1. 1. Interlacing marketing and customer experience

nmodes chatbots are custom built for the brands.  nmodes solutions support full customer lifecycle from lead generation to marketing campaigns to scheduling demos, to gathering feedback and understanding engagement patterns of existing customers.

  1. 2. Lifetime AI training

nmodes solutions promise to work with progressive AI capabilities that are built to recognize old and new communication patterns and form a sensible response template that is malleable and fulfills the intent of desired conversation for the customers.

Nmodes solutions work on three principles while conversing with the customers.

A) Keep business context

nmodes solutions remember the customer’s history and their presence in the sales cycle and hence conversations are based upon the context of customer for the brand.

B) Data personalization

personalization of conversations focuses on collecting different data points from all internal and external data sources, helping brands deliver tailored and one-on-one predictive interactions.

C) Easy to use analytics

nmodes advanced dashboards uncover detailed analytics and insights on customer conversion rates, engagement rates and listen upon most common conversations to help brands better align their marketing communications and customer experience strategies.




READ MORE