Aug

Scalable Yet Personalized

How to offer businesses and organizations a solution that personalizes and scales consumer interaction process at the same time?

Personalizing the user relationship process. Today end users and consumers demand to be targeted individually and to be approached based on their actual interests. nmodes AI (Artificial Intelligence) powered solution helps organizations accurately identify user needs in real time. Our solution delivers information on each user individually thus providing the necessary level of personalization required of the successful customer service.

Scaling the user relationship process: Once the organization identifies a user and a problem that needs to be addressed, next step is reaching out to that user individually. Currently this is a manual non-scalable procedure. nmodes AI (Artificial Intelligence) solution provides automated assistance to human personnel, including substitution when deemed appropriate, thus making the entire process scalable.

Today more than 90% of all organizations and businesses rely on solutions based on keywords, even though these solutions provide low quality results not sufficient for the new generation of personalized scalable services.

nmodes solution enables sustainable delivery of high quality results, with x5 costs reduction and up to 45% increase in conversation (engagement) capacity.

 

Interested in reading more? Check out our other blogs:

Social selling. Difference between Facebook and Twitter

                                                         

There are obviously some key differences between Facebook and Twitter that make them appealing to different people as well as businesses. If possible, businesses should try to leverage both networks in their marketing and sales efforts.

But marketing approaches for each network differ.  Consequently social selling approaches differ as well. Here are some major differences of the two networks that impact sales strategy:

- Twitter lets all the accounts commingle, Facebook makes a definite distinction between business and personal. This can be an issue because a business page cannot proactively connect with individuals with personal profiles. Individuals have to first like a business page and still the business can’t reach out to them directly unless they message first. This is not the case with Twitter, as anyone can follow pretty much anyone.

- Facebook preferred way to market products and promote online sales can be compared to a showroom. The prospects can see the product and purchase it through some other channel, however engagement (with prospects) is limited to friends and followers. Hence growing the number of friends and followers becomes a critical task on Facebook.  Twitter does not offer promotional capabilities but engagement activity is not limited to followers. The engagement on Twitter is therefore more straightforward and can lead to direct sales.

- Facebook user data is typically open to friends or followers. Twitter data is typically open to the entire world.

- Twitter is fast (minutes). Facebook is slower (hours and days).

- Twitter is more about building a brand identity. Facebook is more about business relationships.

To summarize, a direct timely engagement could be a good strategy on Twitter. In a typical scenario a user tweets that she needs a taxi or asks where to dine tonight. A taxi company or a relevant restaurant engages in a conversation and secures a customer. It is an efficient approach with immediate ROI.

On Facebook a good strategy is to grow and educate a community of followers. Facebook is excellent for promotional campaigns. This is a longer-term strategy with effects not visible until after several months.

 

READ MORE

WHAT IS AI TRAINING



AI training is a critical part of conversational AI solutions, a part that makes AI software different from any kind of software previously created.
AI training is not coding.
Unlike all other existing software which is fully coded.

Let us consider a simple example:
We create chatbots for two companies, one company is selling shoes, another is selling cars. From the software standpoint it is one chatbot solution running as an online service accessed remotely or a program available locally. In both cases they are two identical instances of the same software (one instance for the shoes company, another for the cars company).
Yet, for the first company the chatbot is supposed to talk about flip-flops, summer shoes, high heels and so on. For the second company, however, the chatbot is not expected to know any of that. Instead, the chatbot should be able to support conversations about car brands, car models, should know how to tell Toyota Camry from Toyota Corolla, etc. This shoes and cars knowledge is not programmable. It is trainable. It is not coded, instead it is a part of language processing capability that AI solutions like chatbots have. And herein lies the major differentiation and advantage of the AI solutions compared to traditional software.

How to train AI?
There are several ways to do it. Sometimes AI system can train itself, improve its linguistic ability over time. It also can be trained by professional linguists. And in some cases, by the users. The latter is the desirable scenario because businesses know better than anybody else what they want their chatbot to talk about.
It is not easy, given the existing state of AI technology, and usually requires a high level of technical knowledge. You may have heard mentions of intents and entities in chatbot discussions. These are examples of linguistic elements AI training is currently based on.
Without proper understanding of what these linguistic elements are and how language acquisition process works in existing AI systems it is better to leave AI training to professional linguists.

READ MORE