Feb

Pros and cons of automation

Automation drives forward the economy. It allows businesses to scale and service large groups of customers. Automation first appeared in traditional industries, such as cotton production in England in 18th century or car conveyors in the US in early 20th century. The automation replaced physical labor.

With the invention of computers automated systems began to replace intellectual labour such as math calculations. Most of the software applications we use today can be described as automation. Online payments processing, online tickets purchasing, tax returns software, computer games, search engines, and endless other programs are all examples of software automation system.

As a next step we are now aiming at automating human decision making processing and high-level intellectual activities, historically considered to be sole domain of humans.

 

One interesting aspect of automation is lesser quality of service compared to manual service.

This is to be expected. If we gain in quantity we lose in quality.The gain in quantity is what automation is about - it allows to reach out to a large number of customers. Manual product or service can reach out to individuals only. The price we pay for the ability to deliver product or provide service en masse is the drop in quality.

 

Sometimes automation is an obvious choice. This is when the gain, the scalability, hugely outweighs the costs, lower quality. Search engine is a popular successful example. In other cases, the advantage in not so obvious. Online travel booking offers fast service without leaving the comforts of the home, but it does not often deliver the best option, such as finding the cheapest flight, and therefore many people still use ‘manual’ travel agents.

 

Interested in reading more? Check out our other blogs:

Towards smarter data - accuracy and precision

                                                   

There is a huge amount of information out there. And it is growing. To make it efficient and increase our competitive advantage we need to evolve and start using information in a smart way, by concentrating on data that drives business value because it is accurate, actionable, and agile. Accuracy is an important measure that determines the quality of data processing solutions.

How accuracy is calculated?

It is easy to do with structured data, because the requirements are formalizable. It is less obvious with unstructured data, e.g. a stream of social feeds, or any data set that involves natural language. Indeed, the sentences of natural language are subject to multiple interpretations, and therefore allow a degree of subjectivity. For example, should a sentence ‘I haven’t been on a sea cruise for a long time’ be qualified for a data set of people interested in going on a cruise? Both answers, yes and no, seem valid.

In these cases an argument was put forward endorsing a consensus approach which polls data providers is the best way to judge data accuracy. This approach essentially claims that attributes with the highest consensus across data providers is the most accurate.

At nmodes we deal with unstructured data all the time because we process natural language messages, primarily from social networks. We do not favor this simplistic approach, as it is considered biased, inviting people to make assumptions based on what they already believe to be true, and making no distinction between precision and accuracy. Obviously the difference is that precision measures what you got right, and accuracy measures both what you got right and what you got wrong. Accuracy is a more inclusive and therefore more valuable characteristic.

Our approach is

a) to validate data against third party independent sources (typically of academic origin) that contain trusted sets and reliable demography. Validating nmodes data against third party sources allows us to verify that our data achieves the greatest possible balance of scale and accuracy.

b) to enrich upon the existing test sets by purposefully including examples ambiguous in meaning and intent, and providing additional levels of categorization to cover these examples.

Accuracy is becoming important when businesses move from rudimentary data use, typical of the first Big Data years, to a more measured and careful approach of today. Understanding how it is calculated and the value it brings helps in achieving long-term sustainability and success.

 

READ MORE

Artificial Intelligence as a Service

                                         

There is a growing demand in the industry for Artificial Intelligence products, from simple chatbots to conversational ecommerce solutions to advanced intelligent systems.

And there is a growing number of AI companies offering such products.

One of the problems however is that AI products currently available on the market require technical sophistication on behalf of the user, such as familiarity with APIs, communication protocols, XML, etc.

nmodes aims to solve this problem. Our position is that the users do not need to be technically savvy to enjoy AI capabilities. We offer our AI solutions as a service, fully hosted, fully supported.

We do not ask for any technical knowledge from our customers. We only want them to tell us the details relevant to the business process they are looking to implement or support and we will take care of the rest.

In particular

1. We train AI to understand and support their own use cases.

2. We host the entire solution, without claiming the ownership of the data we process or use to train our AI.

3. We support all user interfaces ( UI ) required by our customers.

4. We connect to third-party APIs and integrate our AI with third-party components.

Artificial Intelligence as a Service ( AIasS ) that we offer makes new AI technology easier to use increasing its exposure to businesses and organizations worldwide.  

 

READ MORE