Feb

Social selling. Difference between Facebook and Twitter

                                                         

There are obviously some key differences between Facebook and Twitter that make them appealing to different people as well as businesses. If possible, businesses should try to leverage both networks in their marketing and sales efforts.

But marketing approaches for each network differ.  Consequently social selling approaches differ as well. Here are some major differences of the two networks that impact sales strategy:

- Twitter lets all the accounts commingle, Facebook makes a definite distinction between business and personal. This can be an issue because a business page cannot proactively connect with individuals with personal profiles. Individuals have to first like a business page and still the business can’t reach out to them directly unless they message first. This is not the case with Twitter, as anyone can follow pretty much anyone.

- Facebook preferred way to market products and promote online sales can be compared to a showroom. The prospects can see the product and purchase it through some other channel, however engagement (with prospects) is limited to friends and followers. Hence growing the number of friends and followers becomes a critical task on Facebook.  Twitter does not offer promotional capabilities but engagement activity is not limited to followers. The engagement on Twitter is therefore more straightforward and can lead to direct sales.

- Facebook user data is typically open to friends or followers. Twitter data is typically open to the entire world.

- Twitter is fast (minutes). Facebook is slower (hours and days).

- Twitter is more about building a brand identity. Facebook is more about business relationships.

To summarize, a direct timely engagement could be a good strategy on Twitter. In a typical scenario a user tweets that she needs a taxi or asks where to dine tonight. A taxi company or a relevant restaurant engages in a conversation and secures a customer. It is an efficient approach with immediate ROI.

On Facebook a good strategy is to grow and educate a community of followers. Facebook is excellent for promotional campaigns. This is a longer-term strategy with effects not visible until after several months.

 

Interested in reading more? Check out our other blogs:

Artificial Intelligence of Chatbots: What Do You Need to Know.

                                                 

While Chatbots have been around for a little while now, their presence is more noticeable thanks to Facebook and Microsoft’s recent advancements.

Initially customers complained about the robot-like experience and the limited functionality of first generation bots and rarely found them useful. The customers were skeptical about how valuable in practice chatbots actually are, which has left recent AI vendors like nmodes with the task to combat the leftover stigma from the poor customer experiences and shortcomings of these initial offerings.

Chatbots, like an IVR?

We’re all used to calling into a contact center and punching numbers into a menu to be routed to the correct agent or service to address our needs. Interactive Voice Response solutions (IVRs) drive this interaction and are basically If/then routing trees that “listen” to the digit entered and “transfer” the user to the appropriate next step. While tremendous advancements in technology have brought voice recognition capabilities, those first generation IVRs were all about automated actions based on prompts.  Enter your account number, press 1 to speak to an agent, etc…

The first generation Chatbots are just like an IVR. They can respond to prompts to progress through a predetermined process or display some canned information like pricing, a contact number, route to an agent, etc., but that was about the extent of it. Still 1stgeneration Chatbots came with 4thgeneration expectations. While these basic functions have tremendous value to a business, the customer expectation is very different when dealing with a phone call vs. a chat session. Consumers have experienced IVR routing for decades whereas chat is still relatively new and is perceived as a conversation with a person, rather than interacting with a machine. Add on the fact that many vendors and consumers mislabeled Chatbots as Artificial Intelligence in the beginning and the expectation of a dynamic, responsive customer experience is even greater.

So it’s no surprise that customers were less than impressed with “Artificial Intelligence” that could only display simple answers and basic information. We were expecting Hal from 2001: A Space Odyssey or KIT from Knight Rider, and we got a pixelated PONG instead.

Let’s talk…

Now, Artificial Intelligence has evolved to be integrated into Chatbots to deliver a more powerful user experience.  While these new versions of Chatbots coming out are powered by Artificial Intelligence, AI powered chat also exists independent of bots in some instances. Confusing? Yeah, I was too.

The beauty behind true Artificial Intelligence is its ability to recognize the context of a conversation and respond with relevant, contextual information dynamically. A customer can now “speak” to technology the same way they would hold a conversation and the AI has the ability to “read” the customer’s intent to provide information quickly and efficiently. No more are you limited to a set of canned responses. The AI can reach in to a wider array of relevant information to craft unique responses based on any number of criteria. While in most cases AI is still limited to a few topics per use case, the technology is growing quickly, making almost daily improvements in functionality and customer experience.

What is even cooler is that the longer the AI is deployed, the more it “learns” and improves the speed and quality of responses. So while the scope of AI interactions is limited at first, the maturity curve is quick, delivering an ever-improving customer experience without having to invest in additional people, processes, or technology. It really is like a “growing up” of technology, right before your eyes. 

READ MORE

Artificial Intelligence Chat Is Evolving Faster Than IVR

                                                         

Although it doesn’t feel like all that long ago, way back in the 90s one of the most important factors to a call center’s success was the ability to route a customer to the right support agent with the IVR (Interactive Voice Response). Countless hours were spent identifying the most efficient call routing patterns and expert agent capabilities to ensure that your request reached the right person quickly. This technology is still widely used today and there are still teams in the largest companies programming IVR systems to accomplish pretty much the same goal.

As the standard for customer support evolved there have been many attempts to improve the function and the customer experience associated with IVRs to reduce hold times and provide more relevant support faster. Even today some companies will use their IVR system as a way to keep a customer on hold, rather than provide a solution, when agents are inundated with calls.

For those of us who’ve worked in the voice industry for some time, we’ve seen first-hand the attempts to accomplish a customer’s need before reaching an agent. First there was expert agent routing that delivered your call to the agent most qualified to help you. Then came advances in voice recognition, which today has evolved to be a very effective tool to increase containment rates and deflect calls from reaching a live agent. My two favorite examples of the power of voice recognition are Cox Communications and Capital One, two examples of great voice recognition and routing.

Our memory, however, is short. It wasn’t so long ago that we were all pulling our hair out punching digits into the phone or constantly repeating “agent”, “Agent”, “AGENT”, AGENT!!!!!”.

Whether it was a limit of computational power or the sheer cost of developing and implementing advanced call center technology, it took decades for phone systems to be able to front end the customer support process as efficiently as they do today. Thankfully we all survived to see it without boiling over from the hypertension usually associated with calling with a customer service department.

Bad customer experience is definitely not the case with Chat Artificial Intelligence (Chat AI). While we seem to hear about the shortcomings of Chat AI like the disconnected conversations and the robotic like responses, these experiences are usually the product of Chatbots with limited AI functionality or early stage deployments. The increases in both computational power and the massive advancements in machine learning are driving excellent customer experiences that improve over time.

When was the last time you heard of technology actually performing better, on its own, without a ton of additional development work or continuous updates? Well, that’s the case with Artificial Intelligence. Like a person, the more experience it has interacting with customers and information, the better it performs with little need to be manually improved or fine-tuned.

Today, AI Chat can be used to answer a large majority of customer requests and because Artificial Intelligence learns as it is used, customers prefer to interact through AI chat to avoid all of the frustrations commonly associated with calling a contact center agent. 

READ MORE